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Abstract
The	physiological	processes	driving	the	rapid	rates	of	calcification	in	larval	bivalves	
are	poorly	understood.	Here,	we	use	a	calcification	substrate‐limited	approach	(low	
dissolved	inorganic	carbon,	CT)	and	mRNA	sequencing	to	identify	proteins	involved	
in	bicarbonate	acquisition	during	shell	formation.	As	a	secondary	approach,	we	ex‐
amined	expression	of	ion	transport	and	shell	matrix	proteins	(SMPs)	over	the	course	
of	larval	development	and	shell	formation.	We	reared	four	families	of	Mytilus edulis 
under	ambient	(ca.	1865	µmol/kg)	and	low	CT	(ca.	941	µmol/kg)	conditions	and	com‐
pared	expression	patterns	at	six	developmental	time	points.	Larvae	reared	under	low	
CT	exhibited	a	developmental	delay,	and	a	small	subset	of	contigs	was	differentially	
regulated	between	ambient	and	low	CT	conditions.	Of	particular	note	was	the	iden‐
tification	of	one	contig	encoding	an	anion	transporter	 (SLC26)	which	was	strongly	
upregulated	 (2.3–2.9	 fold)	 under	 low	CT	 conditions.	 By	 analyzing	 gene	 expression	
profiles	over	the	course	of	larval	development,	we	are	able	to	isolate	sequences	en‐
coding	ion	transport	and	SMPs	to	enhance	our	understanding	of	cellular	pathways	
underlying	larval	calcification	processes.	In	particular,	we	observe	the	differential	ex‐
pression	of	contigs	encoding	SLC4	family	members	(sodium	bicarbonate	cotransport‐
ers,	 anion	exchangers),	 calcium‐transporting	ATPases,	 sodium/calcium	exchangers,	
and	SMPs	such	as	nacrein,	tyrosinase,	and	transcripts	related	to	chitin	production.	
With	a	range	of	candidate	genes,	this	work	identifies	ion	transport	pathways	in	bi‐
valve	larvae	and	by	applying	comparative	genomics	to	investigate	temporal	expres‐
sion	patterns,	provides	a	foundation	for	further	studies	to	functionally	characterize	
the	proteins	involved	in	larval	calcification.
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1  | INTRODUC TION

During	bivalve	ontogeny,	major	developmental	steps	occur	rapidly	
within	 the	 first	days	of	 life	 to	produce	the	 larval	 shell,	prodisso‐
conch	 I	 (PD	 I).	 Successful	 deposition	 of	 the	 PD	 I	 shell	 is	 essen‐
tial	 for	 subsequent	 development	 as	 the	 calcified	 shell	 provides	
structural	 support	 for	 swimming	 and	 feeding	 (Galtsoff,	 1964).	
Calcification	 begins	 as	 the	 precipitation	 of	 a	 calcium	 carbonate	
shell	onto	an	organic	template	during	the	trochophore	larval	stage	
which	 is	characterized	by	a	free‐swimming,	ciliated	 larva	 (Bayne,	
1976).	The	supply	of	calcification	substrates	(Ca2+	and	HCO3

−) to 
the	 site	 of	 calcification	 by	 means	 of	 transepithelial	 transport	 is	
crucial	(Ramesh,	Hu,	Thomsen,	Bleich,	&	Melzner,	2017).	In	addi‐
tion,	organic	matrix	components	such	as	shell	matrix	proteins	and	
carbohydrates	 (up	 to	 5%	 of	 shell	mass,	 Simkiss	 &	Wilbur,	 2012)	
are	 synthesized	and	 incorporated	 into	 the	growing	shell,	provid‐
ing	 the	organic	 template	 for	Ca2+	 deposition.	Although	 compris‐
ing	a	 small	proportion	of	 the	 shell	 content,	 shell	matrix	proteins	
are	a	diverse	assemblage	of	proteins	that	are	important	for	poly‐
morph	control,	crystal	nucleation,	deposition	kinetics,	and	struc‐
ture	(Marin,	Luquet,	Marie,	&	Medakovic,	2008;	Miyamoto	et	al.,	
2013).	Within	2	days	of	development,	bivalve	larvae	precipitate	an	
inorganic	aragonitic	shell	that	is	almost	equivalent	to	their	somatic	
mass	and	covers	the	entire	larval	body	(Waldbusser	et	al.,	2013).	
Accompanying	this	transition	into	PD	I	larval	stage	is	a	250‐fold	in‐
crease	in	larval	calcium	content	within	a	few	hours	(Ramesh	et	al.,	
2017).	In	bivalve	larvae,	the	substrates	for	calcification	(Ca2+	and	
HCO3

−)	are	not	accumulated	prior	to	calcification	but	are	continu‐
ally	supplied	during	larval	shell	formation,	most	likely	by	means	of	
transepithelial	transport	(Ramesh	et	al.,	2017).

The	transport	of	calcium	and	bicarbonate	 ions	to,	and	removal	
of	protons	 from,	 the	calcification	space	 in	bivalves	 is	 regulated	by	
the	expression	and	activity	of	membrane‐bound	ion	transport	pro‐
teins	 (Ramesh	et	al.,	2017;	Sillanpaa,	Sundh,	&	Sundell,	2018).	The	
close	 relationship	 between	 calcification	 and	 acid–base‐related	 ion	
transport	processes	makes	it	difficult	to	distinguish	between	these	
processes	as	 intracellular	pH	regulation	 is	also	achieved	via	move‐
ment	of	protons	and	bicarbonate	across	the	cell	membrane.	Primary	
active	 ion	 transporters	 such	 as	 V‐type	 H+	 ATPases	 and	 H+/K+‐
ATPases	utilize	energy	 (ATP)	 for	proton	 translocation.	 Secondarily	
active	 proton	 transport	 is	 driven	 by	 the	 electrochemical	 gradient	
provided	by	other	membrane‐bound	 transport	 proteins,	 often	 the	
ubiquitous	Na+/K+	ATPase	(NKA).	These	secondarily	active	proteins	
are	important	for	pHi	regulation	and	are	involved	in	the	translocation	
of	protons	and	bicarbonate	via	Na+‐coupled	pathways	 (Na+/H+	ex‐
changers	SLC9,	Na+	HCO3

−	cotransporters,	SLC4),	anion	exchangers	
(Cl−/HCO3

−	 exchangers,	 SLC4),	 or	 voltage‐gated	 proton	 channels.	
The	cellular	pathways	elicited	 to	 regulate	 intracellular	pH	are	 fun‐
damentally	 conserved	 in	 eukaryotes,	 and	 the	presence	of	 all	 rele‐
vant	transporter	families	in	bivalves	has	been	confirmed	by	genome	
and	transcriptome	sequencing	projects	in	the	last	decade	(Li,	Sun,	et	
al.,	2016;	Murgarella	et	al.,	2016;	Takeuchi	et	al.,	2012;	Zhang	et	al.,	

2012).	Several	of	these	membrane‐bound	proteins	have	been	func‐
tionally	characterized	to	be	involved	in	mollusc	intracellular	pH	regu‐
lation	(Boron	&	DeWeer,	1976;	Ellington,	1993;	Sillanpaa	et	al.,	2018;	
Zange,	Grieshaber,	&	Hans,	1990).	However,	the	role	and	regulation	
of	 the	 ion	 transport	 proteins	 that	 facilitate	 substrate	 uptake	 and	
proton	extrusion	have	not	yet	been	characterized	in	mollusc	larval	
calcification.	While	 there	are	a	number	of	 transcriptome	sequenc‐
ing	studies	available	that	challenged	adult	and	 larval	mollusc	calci‐
fication	processes	using	future	ocean	acidification	scenarios,	there	
are	 no	 published	 accounts	 of	 direct	 functional	 characterization	of	
putative	calcification‐relevant	ion	transporters	using	knock	down	or	
knock	out	techniques	(DeWit,	Durland,	Ventura,	&	Langdon,	2018;	
Goncalves	et	al.,	2016;	Hüning	et	al.,	2013).	On	 the	other	hand,	a	
number	 of	 studies	 have	 successfully	 used	 RNAi	 to	 demonstrate	
functional	roles	of	specific	shell	matrix	proteins	and	have	shown	that	
their	presence	is	critical	to	“normal”	shell	development	(Fang	et	al.,	
2011;	Funabara	et	al.,	2014;	Suzuki	et	al.,	2009).	Previous	studies	on	
mollusc	larval	development	have	revealed	several	shell	matrix	pro‐
teins	and	genes	associated	with	 shell	production	 (Li,	Zhang,	et	 al.,	
2016;	Liu	et	al.,	2015)	and	indicate	that	bivalve	larvae	utilize	notably	
different	shell	matrix	proteins	when	compared	with	adults	(Zhao	et	
al.,	2018).

The	absence	of	 information	on	 the	 fundamental	mechanisms	
of	bivalve	 larval	calcification	physiology	 limits	our	ability	to	pre‐
dict	how	these	organisms	can	respond	and	adapt	to	environmen‐
tal	change.	One	way	to	address	hypotheses	regarding	the	role	of	
various	ion	transporters	related	to	mineral	formation	and	organic	
deposition	 in	 the	 larval	 calcification	 pathway	 is	 by	 challenging	
calcification	in	a	substrate‐limited	environment.	In	this	study,	we	
used	RNA‐Seq	techniques	to	identify	ion	transport	and	shell	ma‐
trix	proteins	involved	in	the	different	developmental	stages	of	cal‐
cifying	larvae	of	the	blue	mussel,	Mytilus edulis.	We	hypothesized	
that	the	genes	involved	in	calcification	in	M. edulis	would	exhibit	
severe	 changes	 in	 expression	 related	 to	 the	 rapid	 rates	 of	 PD	 I	
calcification	in	these	organisms.	Based	on	previous	empirical	data	
on	larval	mussels	which	demonstrated	that	 limiting	conditions	of	
dissolved	inorganic	carbon	(CT)	elicited	strong	reductions	in	larval	
calcification	 (Thomsen,	 Haynert,	Wegner,	 &	Melzner,	 2015),	 we	
used	a	substrate‐limited	approach	(low	CT)	to	gain	insight	into	the	
role	of	these	genes,	primarily	those	 involved	 in	 inorganic	carbon	
acquisition	and	crystal	formation.

2  | MATERIAL S AND METHODS

Adult	mussels	were	collected	in	Kiel	Fjord	(54°19.8′N;	10°9.0′E)	from	
subtidal	depths	(ca.	1.5	m)	in	June	2016.	Kiel	mytilids	are	Mytilus edu‐
lis × trossulus	hybrids	with	high	edulis‐like	allele	frequencies	(Stuckas,	
Stoof,	Quesada,	&	Tiedemann,	2009).	We	will	refer	to	them	as	Baltic	
Mytilus edulis‐like	according	to	Stuckas	et	al.	 (2017).	Spawning	was	
induced	by	exposing	the	adults	to	rapidly	elevated	water	tempera‐
ture	 between	18	 and	25°C.	 Spawning	 individuals	were	 separated,	
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and	gametes	were	collected	in	individual	beakers	filled	with	0.2	µm	
filtered	seawater	(FSW).	Eggs	were	fertilized	with	sperm,	and	ferti‐
lization	success	was	estimated	by	the	presence	of	polar	bodies/cell	
cleavage.	Cleaving	embryos	were	reared	in	10‐L	Duran	glass	bottles	
at	a	density	of	10	embryos	ml−1	bubbled	with	pressurized	air	through	
plastic	tubing.	All	experiments	were	performed	at	17°C.	A	total	of	
four	separate	 fertilizations	were	obtained	to	conduct	 replicate	ex‐
periments	(n = 4).

2.1 | Experimental treatments and sample collection

Seawater	carbonate	chemistry	was	manipulated	by	the	addition	of	
1	M	HCl	 to	FSW,	 thereby	 lowering	 the	 availability	 of	 calcification	
substrates	 (HCO3

−,	but	also	CO3
2−).	Excess	carbon	dioxide	was	 re‐

moved	by	aeration	with	pressurized	air	for	1	hr.	Seawater	pH	was	de‐
termined	on	the	NBS	scale	using	a	WTW	3310	pH	meter	equipped	
with	a	Sentix	81	electrode.	Water	for	carbonate	chemistry	samples	
was	collected	from	the	culture	bottles	 just	before	adding	embryos	
to	the	bottles.	Samples	were	collected	in	52‐mL	Duran	Schott	glass	
bottles	with	glass	stoppers	and	preserved	by	the	addition	of	10	μl 
of	 saturated	 HgCl2	 solution.	 Seawater	CT	 was	measured	 using	 an	
AIRICA	CT	analyzer	(Marianda,	Germany)	and	verified	with	certified	
reference	material	(batch	142;	Scripps	Institution	of	Oceanography,	
University	of	California,	San	Diego,	CA,	USA).	Seawater	carbonate	
chemistry	parameters	were	calculated	using	 the	CO2SYS	program	
with	KHSO4,	K1,	and	K2	dissociation	constants	after	Dickson	(1990)	
and	Roy	 et	 al.	 (1993),	 respectively.	 Cleaving	 embryos	were	 added	
to	treated	water	once	pH	had	increased	to	stable	values	(ca.	8.14).	
Temperature,	 salinity,	 and	 carbonate	 chemistry	 parameters	 of	 ex‐
perimental	conditions	are	shown	in	Table	S1.

For	 each	 experiment,	 embryos	 from	 single	 fertilizations	 were	
added	 to	 both	 control	 (FSW)	 and	 treatment	 (low	 CT)	 bottles	 and	
sampled	at	 six	developmental	 time	points	as	determined	by	hours	
postfertilization	(hpf).	Samples	were	collected	at	20,	22,	24,	27,	30,	
and	35	hpf	from	control	bottles,	based	on	time	points	that	were	pre‐
viously	identified	to	be	critical	for	calcification	(Ramesh	et	al.,	2017).	
To	 correct	 for	 developmental	 delay	 in	 treatment	 bottles,	 samples	
were	collected	at	similar	developmental	 stages	 to	 those	 in	control	
bottles,	as	determined	by	frequent	microscopic	observation	of	per‐
centage	shell	cover	of	the	larval	body	(Figure	S1).	Stage	1	occurred	
prior	to	calcification	while	at	Stage	2,	the	onset	of	calcification	was	
observed,	and	 larvae	exhibited	a	dorsal	 flattening	at	 the	 region	of	
the	shell	field.	At	Stages	3	and	4,	the	trochophore	shell	was	observed	
by	the	presence	of	a	shell	that	covered	ca.	10%	and	49%	of	the	larval	
body,	respectively.	Finally,	at	Stages	5	and	6,	larvae	had	secreted	a	
shell	that	covered	ca.	76%	and	100%	of	the	larval	body,	respectively.

Samples	were	 quickly	 concentrated	 on	 a	mesh	 (55	µm),	 trans‐
ferred	 to	 1.5‐ml	 Eppendorf	 tubes	 and	 centrifuged	 at	 10,000	 g to 
form	a	larval	pellet	(~6,000	larvae).	Seawater	was	removed	using	a	
pipette,	and	samples	were	flash	frozen	in	liquid	nitrogen	and	stored	
at	−80°C.

For	each	sample	time	point,	ca.	100	larvae	for	photographs	were	
fixed	in	4%	paraformaldehyde	prepared	in	FSW,	buffered	to	pH	8.2	

using	5	mM	NaOH.	Samples	were	photographed	using	a	Zeiss	Axio	
Scope	A1	microscope	equipped	with	a	ProgRes	CF	Jenoptik	camera	
and	ProgRes	Capture	Pro	software	(v.	2.9.0.1).

2.2 | RNA extractions and sequencing

Total	RNA	was	extracted	from	samples	using	a	RNeasy	Mini	Kit	ac‐
cording	to	manufacturer's	instructions	(Catalog	no.	74104,	Qiagen).	
RNA	 yield	 and	 purity	were	 initially	 assessed	 by	measuring	 A260/
A230	and	A260/A280	 ratio,	with	a	NanoDrop	spectrophotometer	
(NanoDrop2000;	Thermo	Scientific),	 followed	by	 integrity	analysis	
on	 a	 bioanalyzer	 (Experion,	 Bio‐Rad).	 The	 libraries	were	 prepared	
from	1	µg	RNA	per	sample	with	the	TruSeq	stranded	mRNA	HT	sam‐
ple	preparation	kit	 (Illumina).	The	quality	and	concentration	of	 the	
resulting	 libraries	were	 checked	with	 a	 bioanalyzer	 (Agilent	 2100)	
using	an	Agilent	DNA	7500	Kit	(Agilent	Technologies).	Library	prepa‐
ration	and	bioanalyzer	validation	were	performed	according	to	man‐
ufacturer	protocols.	DNA	fragment	 length	and	concentration	data	
were	then	used	to	calculate	the	molarity	of	individual	libraries,	which	
were	subsequently	pooled	equimolarly	(10	nM)	and	sequenced	on	an	
Illumina	NextSeq500	sequencer	to	generate	75	bp	single	end	reads.	
Illumina	BCL	files	were	converted	to	fastq	files	and	de‐multiplexed	
using	bcl2fastq	(v2.17;	Illumina)	using	default	settings.

2.3 | Bioinformatics analysis

All	 bioinformatics	 analyses	were	 carried	 out	 using	 default	 param‐
eters,	unless	otherwise	specified.	 Illumina	adapter	trimming	of	the	
reads	was	 performed	 using	 Trimmomatic	 v.0.33	 (Bolger,	 Lohse,	 &	
Usadel,	2014),	and	the	reads	were	further	trimmed	based	on	qual‐
ity	and	length	using	Fastq‐mcf	v.1.04.636	(Aronesty,	2011),	setting	
the	Phred	quality	 score	 to	30	and	minimum	read	 length	 to	60	bp.	
A	published	mantle	transcriptome	of	Baltic	M. edulis‐like	individuals	
(Yarra,	 2018,	PRJNA494236),	 collected	 from	 the	 same	geographic	
coordinates	 as	 the	 animals	 in	 this	 study,	 was	 used	 for	 mapping	
reads.	 The	 cleaned	 reads	were	 aligned	 to	 the	 Baltic	M. edulis‐like	
mantle	transcriptome	(Yarra,	2018)	using	Bowtie	v.1.1.1	(Langmead,	
Trapnell,	Pop,	&	Salzberg,	2009),	and	the	digital	measure	of	transcript	
abundance	was	 calculated	 using	 RSEM	 (RNA‐Seq	 by	 Expectation‐
Maximization)	 v.1.2.20	 (Li	&	Dewey,	2011).	All	 contigs	with	digital	
expression	levels	less	than	2	counts	per	million	(CPM)	at	the	Trinity	
“gene”	 level,	 in	 at	 least	 half	 the	 libraries,	were	 filtered	 out	 before	
analysis	for	differential	expression.	Preliminary	analysis	of	the	data	
revealed	mislabeling	of	 four	samples,	and	the	mislabeling	was	cor‐
rected	as	discussed	in	Appendix	S1.

Contigs	 from	 the	mantle	 transcriptome	were	annotated	with	a	
few	different	databases	(Yarra,	2018).	Sequence	similarity	searches	
of	the	transcript	sequences	were	performed	using	BLAST	(Altschul,	
Gish,	Miller,	Myers,	&	Lipman,	1990,	blastx)	with	an	E‐value	cut	off	
of	 1e−10	 against	 public	 databases	 SwissProt	 (accessed	 08	 January,	
2017),	Trembl	(accessed	04	August,	2016),	Shell	Matrix	Protein	data‐
base	(01	JULY	2018;	Yarra,	2019,	https	://doi.org/10/cz2w),	and	the	
in‐house	transmembrane	transporters	list..	Matches	were	considered	

https://doi.org/10/cz2w
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where	at	least	40%	of	the	query	sequence	was	aligned	to,	were	con‐
sidered	to	reflect	strong	sequence	similarity.	Transdecoder	(part	of	
the	Trinity	pipeline)	was	used	to	translate	contigs	into	putative	pro‐
tein	sequences	of	at	least	20	codons.	Translated	protein	sequences	
were	mined	 for	domain	and	 family	 information	using	 Interproscan	
(Jones	et	al.,	2014),	and	Gene	Ontology	(GO)	terms	for	contigs	were	
assigned	based	on	the	Interpro	database	(Finn	et	al.,	2017).

Differentially	 expressed	 contigs	 between	 developmental	
stages	and	treatments	were	identified	using	edgeR	3.20	(Robinson,	
McCarthy,	 &	 Smyth,	 2010).	Differential	 gene	 expression	 between	
the	different	 libraries	was	 assessed	using	 the	paired	experimental	
model	 (Family	 +	 Treatment	 and	 Stage),	 and	 only	 results	with	 FDR	
values	of	at	 least	0.001	were	considered.	EBSeqHMM	(Leng	et	al.,	
2015)	was	used	to	assess	the	expression	profile	of	genes	over	the	
developmental	stages	and	to	cluster	genes	by	expression	paths.	The	
expression	profiles	of	both	control	and	treatment	libraries	through	
the	development	stages	were	analyzed	and	compared.	Only	results	
with	 a	 FDR	 value	 of	 at	 least	 0.001	 were	 considered.	 For	 further	
GO	 enrichment	 analysis,	 only	 expression	 profiles	 with	 at	 least	 a	
50%	posterior	probability	 (Max	PP)	were	used.	Enrichment	of	GO	
terms	 for	 genes	 clustered	 into	 the	 same	 expression	 profile	 using	
EBSeqHMM	was	performed	using	downstream	Trinity	pipeline	 for	
Trinotate	and	GOSeq	(Grabherr	et	al.,	2011),	and	only	results	with	
at	least	FDR	value	of	0.05	were	considered.	For	the	purpose	of	fur‐
ther	characterizing	contigs	of	interest,	translated	protein	sequences	
were	globally	aligned	to	sequences	from	the	public	databases	using	
Mafft	 (Katoh,	 Rozewicki,	 &	 Yamada,	 2017),	 with	 the	 BLOSUM62	
(Henikoff	&	Henikoff,	1992)	scoring	matrix,	and	neighbor	joining	(NJ)	
trees	were	constructed	using	the	WAG	matrix	(Whelan	&	Goldman,	
2001)	with	a	bootstrap	value	of	100,	on	only	the	conserved	residues	
between	all	sequences.	The	expression	profiles	for	contigs	of	inter‐
est	with	the	highest	posterior	probability	were	displayed,	along	with	
the	normalized	count	values	of	all	four	larval	families	in	the	control	
libraries	(with	a	trend	line	represented	using	lowess	smoothing).	The	
bicarbonate	transport	phylogenetic	tree	was	constructed	based	on	

95	conserved	sites	of	43	sequences,	including	10	Baltic	M. edulis‐like	
contigs,	and	a	cystic	fibrosis	transmembrane	conductance	regulator	
from	zebrafish	as	an	outlier.	All	accession	ID's	for	protein	sequences	
used	in	the	tree	are	provided	in	Table	S2.

3  | RESULTS

3.1 | Larval development

Manipulation	of	seawater	carbonate	chemistry	by	the	addition	of	
1	M	HCl	resulted	in	a	reduction	of	CT	from	1865.5	±	26.2	µmol/
kg	 seawater	 under	 control	 conditions	 to	 941.7	 ±	 51.3	 µmol/kg	
seawater.	In	addition,	a	reduction	in	bicarbonate	availability	from	
1840.8	 ±	 23.2	 to	 888.3	 ±	 47.5	 and	 carbonate	 availability	 from	
108	±	 3.7	 to	 43.7	 ±	 5	was	 observed	 (Table	 S1).	 Further,	 seawa‐
ter CT	 reductions	were	associated	with	a	decrease	 in	pCO2	 from	
423.4	±	7.2	µatm	under	control	conditions	to	244.6	±	23.7	µatm	
and	Ωaragonite	 from	1.7	±	0.03	 to	0.6	±	0.08.	Development	at	 re‐
duced	 CT	 resulted	 in	 a	 developmental	 delay	 starting	 at	 22	 hpf,	
corresponding	 to	 the	 onset	 of	 calcification	 (Ramesh	 et	 al.,	
2017,	 Figure	 S1,	 Table	 1).	 The	 mean	 developmental	 delay	 was	
1.71	±	1.38	hr,	 and	 in	one	 family,	 the	delay	was	observed	 to	 go	
up	to	6	hr	(Table	1).	The	variability	in	developmental	delay	across	
replicates	may	be	attributed	to	biological	variability	 in	 larval	en‐
ergy	budgets	or	differences	in	the	degree	of	M. edulis × M trossulus 
hybridization	between	the	four	replicate	families.	Morphologically	
distinct	developmental	stages	were	ascribed	to	Stages	1–6	for	fur‐
ther	analyses.

3.2 | Quality control of sequencing reads

Sequencing	of	48	larval	libraries	yielded	a	total	of	590	million	reads,	
with	541	million	reads	remaining	after	filtering	based	on	quality	and	
length.	Cleaned	reads	were	aligned	to	the	Baltic	M. edulis‐like	man‐
tle	transcriptome	(Yarra,	2018),	and	mapping	rates	of	approximately	

TA B L E  1  Morphological	stages	at	which	Baltic	Mytilus edulis‐like	larvae	were	sampled	during	the	experiment

Stage Description

Hours postfertilization

Control 
families

Reared under low CT conditions

F001 F002 F003 F004

Early	trochophore Precalcification 20 20 20 20 20

Trochophore Larvae	exhibit	dorsal	flattening	at	the	region	of	the	shell	field	which	
marks	the	onset	of	calcification

22 22 22 22 22

Trochophore First	trace	of	mineralization	is	observed	by	the	presence	of	a	small	(ca.	
20	µm)	shell	and	birefringence	at	the	hinge	area.	Presence	of	an	early	
trochophore	shell	has	previously	been	observed	at	22	hpf	(Ramesh	et	
al.,	2017)

24 25 25 24 25

Trochophore 49%	±	7.7%	of	the	larval	shell	is	covered	by	a	mineralized	shell 27 29 29 28 28

Late	trochophore 76.9%	±	7.9%	of	the	larval	shell	is	covered	by	a	mineralized	shell 30 33 32 31 31

D‐veliger Larvae	have	secreted	the	PD	I	shell	and	exhibit	a	distinctive	“D”	shape 35 41 35 36 36

Note:	Changes	in	shell	cover	are	quantified	from	N	=	20	larvae	and	are	reported	as	mean	±	SD.	Under	control	conditions,	larval	development	across	
families	was	relatively	uniform	(maximum	standard	deviation	=	ca.	+7%	shell	cover,	Table	1)	and	sampled	at	six	identical	time	points.
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80%	were	observed	for	all	 larval	 libraries.	Filtering	based	on	CPM	
values	yielded	29,177	Trinity	genes	for	further	analysis.

3.3 | Gene expression analysis

Three	types	of	differential	gene	expression	analysis	were	conducted	
for	this	dataset:	pairwise	comparisons	between	treatment	and	con‐
trol	groups	at	each	developmental	stage,	pairwise	comparisons	be‐
tween	developmental	stages,	and	time	course	comparisons	between	
the	developmental	stages	using	an	auto‐regressive	hidden	Markov	
statistical	model.

In	 the	 pairwise	 comparisons	 between	 treatment	 and	 control	
libraries,	 very	 few	contigs	 (53)	were	 found	 to	be	differentially	 ex‐
pressed	at	each	developmental	stage	(Table	S3).

However,	 multiple	 contigs	 were	 found	 to	 be	 differentially	
expressed	 between	 the	 pairwise	 comparison	 of	 developmental	
stages.	 A	 large	 number	 of	 contigs	 (22,564)	 were	 differentially	
expressed	 between	 Stage	 1	 and	 each	 subsequent	 developmen‐
tal	 stage,	 and	 multiple	 contigs	 were	 also	 found	 to	 be	 differen‐
tially	 expressed	between	each	 consecutive	developmental	 stage	
(Table	S4).	Two	hundred	and	forty‐five	contigs	were	differentially	
expressed	following	the	onset	of	 larval	shell	deposition	(Stage	2)	
in	comparison	to	the	precalcifying	ontogenetic	stage	(Stage	1;	at	
20	hpf,	Table	S5).

The	 time	 series‐based	 differential	 gene	 expression	 analysis	
revealed	 two	 expression	 paths	 to	 be	 the	most	 prevalent	 during	
PD	 I	 development	 in	 the	 Baltic	M. edulis‐like	 trochophore	 stage	
(Table	2).	Enrichment	of	GO	terms	in	the	most	prevalent	expres‐
sion	 profile	 “Down‐Up‐Up‐Up‐Up”	 (for	 families	 reared	 under	
control	 conditions)	 revealed	 multiple	 functions	 associated	 with	
biomineralization,	 such	 as	 calcium	 ion	 binding,	 chitin	 binding,	
transmembrane	 transporter	 activity,	 etc.	However,	 very	 few	GO	
terms	were	enriched	in	the	second	most	prevalent	expression	pro‐
file	“Up‐Down‐Down‐Down‐Down”	(Table	3).	Although	the	abso‐
lute	number	of	differentially	expressed	contigs	within	the	control	

and	 treatment	 libraries	 was	 different	 between	 developmental	
stages	(Table	S4),	the	enriched	GO	functionalities	were	very	simi‐
lar	between	treatments.

3.4 | Identification of transport pathways involved 
in calcification

The	primary	objective	of	 this	study	was	to	 identify	candidates	of	
ion	transporter	proteins	potentially	involved	in	providing	substrates	
(Ca2+,	 HCO3

−)	 for	 larval	 calcification.	 Substrate	 (CT)	 limitation	

TA B L E  2  Top	ten	expression	profiles	and	number	of	contigs	within	each	expression	profile

Control libraries Treated libraries

Expression profile Num. contigs Expression profile Num. contigs

Down‐Up‐Up‐Up‐Up 1,249 Down‐Up‐Up‐Up‐Up 1,242

Up‐Down‐Down‐Down‐Down 837 Up‐Down‐Down‐Down‐Down 867

Up‐Down‐Down‐Down‐Up 492 Down‐Down‐Down‐Down‐Down 447

Down‐Down‐Down‐Down‐Down 470 Down‐Up‐Down‐Down‐Down 393

Down‐Up‐Down‐Down‐Down 357 Down‐Up‐Down‐Down‐Up 354

Down‐Up‐Up‐Up‐Down 333 Down‐Up‐Down‐Up‐Up 294

Down‐Up‐Up‐Down‐Down 137 Down‐Up‐Up‐Up‐Down 291

Up‐Down‐Down‐Up‐Up 105 Up‐Down‐Down‐Down‐Up 205

Down‐Up‐Down‐Down‐Up 99 Up‐Down‐Up‐Down‐Down 191

Up‐Down‐Up‐Up‐Up 92 Up‐Down‐Up‐Up‐Down 173

Note:	Only	contig	expression	profiles	with	at	least	0.001	FDR	and	posterior	probability	of	at	least	50%	are	summarized.

TA B L E  3  Enrichment	of	GO	terms	in	the	top	two	expression	
profiles

Control libraries Treated libraries

Profile	1:	“Down‐Up‐Up‐Up‐Up”

Calcium	ion	binding Calcium	ion	binding

Hydrolase	activity	(O‐glycosyl	
compounds)

Hydrolase	activity	(O‐glycosyl	
compounds)

Transporter	activity Transporter	activity

Chitin	binding Chitin	binding

Catalytic	activity Catalytic	activity

Oxidoreductase	activity Oxidoreductase	activity

Polysaccharide	binding Polysaccharide	binding

Heme	binding Heme	binding

Ion	channel	activity Carbohydrate	binding

Transmembrane	transporter	
activity

ß‐N‐acetylhexosaminidase	
activity

Profile	2:	“Up‐Down‐Down‐Down‐Down”

None Nucleic	acid	binding

 Microtubule	binding

 ATP	binding

Note:	Top	ten	Molecular	Function	(MF)	terms	with	at	least	0.05	FDR.	
Only	contig	expression	profiles	with	at	least	0.001	FDR	and	posterior	
probability	of	at	least	50%	were	used	for	GOSeq	analysis.
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induced	a	small	set	of	contigs	to	be	differentially	regulated	(Table	4,	
Table	S3)	with	fold	change	values	between	0.26	and	0.57	and	be‐
tween	1.54	and	16.11	for	down	and	upregulated	contigs,	 respec‐
tively	(Figure	S2).	Only	one	contig	showed	high	sequence	similarity	
to	an	ion	transporter	(SLC26A11,	TRINITY_DN175059_c1_g4)	and	
belongs	to	solute	carrier	family	26	(SLC26),	a	group	of	ion	transport	
proteins	 that	 transport	 a	 diverse	 set	 of	 anions,	 including	 HCO3

− 
(Cordat	&	Casey,	2009).	During	the	course	of	Baltic	M. edulis	larval	
development,	 expression	 of	 this	 SLC26A11	 contig	 was	 progres‐
sively	upregulated	under	control	conditions	(Figure	1a,	Down‐Up‐
Up‐Up‐Up‐‐0.7301	[posterior	probability]).	The	expression	of	this	
contig	was	observed	to	be	2.3	and	2.9‐fold	higher	under	substrate	
limitation	at	Stage	4	and	5,	respectively	(Table	S3).

3.5 | Putative homology of bicarbonate ion 
transporters

There	are	multiple	families	of	bicarbonate	transporters	present	 in	
eukaryotes	(Alper	&	Sharma,	2013;	Pushkin	&	Kurtz,	2006).	To	fur‐
ther	characterize	the	sequence	similarity	of	differentially	expressed	
contigs	with	bicarbonate‐transporting	domains,	a	phylogenetic	tree	
from	multiple	sequence	alignments	of	translated	protein	sequences	
was	assessed	(Figure	2).	The	phylogenetic	analysis	presented	here	
indicates	that	like	most	eukaryotes,	Baltic	M. edulis‐like	larvae	pos‐
sess	 several	 cellular	 HCO3

−‐transporting	 proteins.	 Two	 putative	
mussel	 HCO3

−‐transporting	 proteins,	 which	 share	 high	 sequence	
similarity	 with	 membrane‐bound	 SLC4	 and	 SLC26	 proteins,	 are	
the	most	interesting	in	the	context	of	the	present	study	(Figure	3).	
These	sequences	have	been	associated	with	calcification	processes	
as	they	were	found	to	be	upregulated	during	adult	mussel	shell	re‐
pair	(Yarra,	2018).

In	 contrast	 to	 the	 small	 number	of	 contigs	 exhibiting	differen‐
tial	 expression	 in	 response	 to	 substrate	 limitation,	 several	 contigs	

putatively	encoding	ion	transport	proteins	corresponding	to	solute	
carrier	families	SLC4,	SLC9,	and	SLC26	were	differentially	expressed	
during	 the	 course	 of	 larval	 development	 and	 shell	 deposition	
(Figure	1).	Among	these	SLC	families,	several	contigs	exhibited	pro‐
gressive	increases	in	expression	during	the	course	of	development	
(Table	S3).	These	sequences	encoded	proteins	such	as	sarco/endo‐
plasmic	reticulum	Ca2+‐ATPase,	sodium/calcium	exchangers	 (NCX),	
and	the	sodium/potassium	ATPase.	The	putative	ion	transport	path‐
ways	involved	in	larval	calcification	based	on	expression	patterns	for	
contigs	of	interest	are	presented	schematically	in	Figure	3.

3.6 | Shell matrix proteins

Multiple	 genes	 that	 encode	 shell	 matrix	 proteins	 previously	 iden‐
tified	 in	 the	 shell	matrices	 of	 adult	Mytilus	 spp.	 and	 expressed	 by	
the	adult	mantle	tissue,	particularly	during	shell	repair,	were	found	
to	 be	 differentially	 expressed	 during	 larval	 shell	 development.	
Approximately,	 33%	 of	 the	 contigs	 annotated	 with	 SMP	 domains	
displayed	an	increasing	expression	profile	starting	from	the	trocho‐
phore	stage	(Table	S6).	A	few	shell	matrix	proteins	(α‐carbonic	anhy‐
drase,	β‐lactamase,	concanavalin	A,	and	cyclophilin	PPIase)	displayed	
decreasing	expression	levels	as	the	initial	shell	was	completed.

4  | DISCUSSION

In	 this	 study,	we	 employed	 a	 two‐stage	 analysis.	 First,	we	 used	 a	
calcification	 substrate‐limited	 approach	 (low	 dissolved	 inorganic	
carbon,	CT)	to	identify	acid–base	regulatory	proteins	necessary	for	
larval	 calcification.	 Second,	 we	 analyzed	 gene	 expression	 profiles	
over	the	developmental	time	course	of	M. edulis	larvae	and	observed	
the	 dynamic	 expression	 of	 several	 contigs	 encoding	 ion	 transport	
and	shell	matrix	proteins	associated	with	particular	developmental	

Stage Upregulated
Sequence similarity to transmembrane 
transporters of interest Downregulated

1 0  0

2 0  0

3 16  0

4 13 Sodium‐independent	sulfate	anion	
transporter

1

5 22 Sodium‐independent	sulfate	anion	
transporter

1

6 21  5

TA B L E  4  Number	of	differentially	
expressed	contigs	in	treatment	libraries	
compared	to	control	libraries,	at	each	
stage

F I G U R E  1  Genes	encoding	putative	ion	transport	proteins	involved	in	larval	calcification	in	Mytilus edulis.	The	morphological	stages	
described	in	Table	1	and	Figure	S1	are	marked	as	1–6	on	the	x‐axes.	Expression	values	for	(a)	The	candidate	SLC26	protein	identified	by	
the	substrate	limitation	experiment.	Expression	values	for	low	CT	and	ambient	conditions	marked	in	red	in	black,	respectively.	(b–d)	Anion	
transport	proteins	(e,	f)	Anion	exchange	proteins	(g,	k)	A	SLC4	sodium	bicarbonate	cotransporter	(h–j)	SLC4	chloride‐bicarbonate	exchange	
proteins	(l)	A	SLC26	prestin	protein	(m,	o)	Sarco/endoplasmic	reticulum	calcium	ATPase	(SERCA)	proteins	(n,	p)	Calcium‐transporting	
ATPase	proteins	(q–s)	Sodium‐calcium	exchange	proteins	(t)	Cation‐transporting	protein	(u)	Sodium	potassium	ATPase	α	subunit	(v)	Sodium	
potassium	ATPase	β	subunit	(w,	x)	Mitochondrial	isoforms	of	sodium‐hydrogen	exchange	(NHE)	proteins	from	SLC9	and	(y)	Sodium‐hydrogen	
exchange	(NHE)	regulatory	cofactor.	Maximum	posterior	probability	for	all	contigs	is	reported	in	Table	S7
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stages.	The	putative	 roles	of	 these	candidate	contigs	 in	acid–base	
homeostasis	and	larval	calcification	are	discussed	below.

4.1 | Substrate limitation approach

We	used	low	dissolved	inorganic	carbon,	CT	to	challenge	larval	acid–
base	 regulatory	 systems	 and	 identify	 candidate	 contigs	 putatively	
involved	in	calcification.	In	comparison	to	controls,	substrate	limita‐
tion	treatments	(mean	CT	=	941.7	µmol/kg	seawater)	were	character‐
ized	by	a	ca.	51%	and	ca.	59%	decrease	in	bicarbonate	and	carbonate	
availability,	 respectively.	 Such	modifications	 in	 seawater	 carbonate	
chemistry	were	accompanied	by	a	developmental	delay	 in	 shell	 ac‐
cretion	that	was	consistent	with	previous	empirical	data	(Thomsen	et	
al.,	2015).	These	observations	in	developmental	delay	demonstrated	
that	low	CT	conditions	were	correlated	with	decreases	in	larval	calci‐
fication	rates	 in	Mytilus edulis	 (Thomsen	et	al.,	2015).	However,	 the	
relatively	 short	 developmental	 delay	 1.71	 ±	 1.38	 hr	 also	 indicated	
that	 larvae	are	 capable	of	 compensating	 for	dramatic	 reductions	 in	
CT	availability.	Developmental	delays	in	response	to	adverse	changes	
in	seawater	carbonate	chemistry	have	been	reported	for	several	bi‐
valve	species	(e.g.,	Ross,	Parker,	O'Connor,	&	Bailey,	2011,	Timmins‐
Schiffman,	O'Donnell,	Friedman,	&	Roberts,	2012).	However,	previous	
transcriptomic	 studies	 have	 not	 accounted	 for	 such	 developmental	
delays	 (Kelly,	 Padilla‐Gamino,	&	Hofmann,	 2016).	Our	 results	 dem‐
onstrate	the	importance	of	correcting	sample	collection	for	develop‐
mental	delays	since	we	observed	that	differences	in	shell	morphology	
(percentage	 shell	 cover)	 were	 related	 to	 specific	 gene	 expression	
profiles,	 as	 has	 been	 previously	 demonstrated	 for	 larval	 echino‐
derms	(Stumpp,	Dupont,	Thorndyke,	&	Melzner,	2011;	Stumpp,	Wren,	
Melzner,	Thorndyke,	&	Dupont,	2011).	We	identified	only	53	contigs	
to	be	differentially	expressed	between	control	and	low	CT conditions.	
However,	median	fold	change	of	contigs	significantly	regulated	in	low	
CT	libraries	with	respect	to	control	libraries	was	ca.	2.44	(Up)	and	0.52	
(Down;	Figure	S2),	 indicating	 that	more	 subtle	 changes	 in	 gene	ex‐
pression	were	not	detected	with	the	present	experimental	design.

Of	particular	 interest	was	the	2.32‐	and	2.96‐fold	upregulation	
of	one	gene	 (contig	TRINITY_DN175059_c1_g4)	at	Stages	4	and	5	
encoding	an	anion	transporter	with	strong	sequence	similarity	to	the	
solute	carrier	 family	26	 (SLC26)	members.	Solute	carrier	 family	26	
members	 transport	a	broad	group	of	anions,	 including	HCO3

−,	 the	
substrate	for	larval	calcification.	Stages	4	and	5	are	particularly	in‐
teresting,	as	they	are	characterized	by	exponential	increases	in	shell	
deposition,	corresponding	to	a	shell	cover	increase	from	ca.	10%	to	
ca.	76%	of	the	larval	body.

Phylogenetic	 tree	 analyses	 revealed	 similarity	 between	 the	M. 
edulis	SLC26	contig	and	the	human	SLC26A11	sulfate/anion	trans‐
porter	(Figure	3).	Recently,	the	function	of	SLC26A11	transporters	
as	 sodium‐independent	 sulfate	 transporters	has	been	critically	 re‐
viewed	based	on	observations	of	their	function	as	a	chloride	channel	
in	mice	neurons	using	electrophysiological	 techniques	 (Rahmati	 et	
al.,	2013).	Furthermore,	 transfection	of	 the	SLC26A11	transporter	
in	mouse	neuronal	 cells	hints	 toward	 the	activation	of	V‐type	H+‐
ATPases	 by	 SLC26A11	 transporters	 inducing	 proton	 translocation	

(Rahmati	et	al.,	2013).	Alternatively,	the	upregulation	of	this	trans‐
porter	during	 larval	development	may	be	 related	 to	 the	uptake	of	
sulfate	for	synthesis	of	sulfated	macromolecules	such	as	proteogly‐
cans	that	are	present	in	the	organic	matrix	of	mollusc	shells	(LeRoy	&	
Marie,	2012).	Sulfated	constituents	of	the	organic	matrix	in	calcified	
structures	have	been	proposed	to	play	a	 role	 in	crystal	nucleation	
(Cuif	 &	 Dauphin,	 2005;	 Cuif,	 Dauphin,	 Doucet,	 Salome,	 &	 Susini,	
2003).	However,	further	characterization	(heterologous	expression)	
is	necessary	to	verify	substrate	specificity.

In	addition	to	the	SLC26	candidate,	the	substrate	limitation	ap‐
proach	also	yielded	several	contigs	that	encoded	proteins	with	po‐
tential	roles	in	M. edulis	 larval	calcification,	 including	at	 least	eight	
differentially	 regulated	 contigs	 with	 high	 sequence	 similarity	 to	
transcripts	that	have	been	previously	demonstrated	to	be	involved	
in	bone	mineralization	and	resorption	or	have	been	shown	to	form	
components	of	organic	matrices	in	mammals.	For	example,	mice	de‐
ficient	 of	 transcription	 factor	 Sox	8	 (upregulated	 under	 low	CT	 at	
Stages	5	and	6)	exhibit	reduced	bone	mass	and	impaired	osteoblast	
differentiation	(Schmidt	et	al.,	2005).	Interestingly,	the	function	of	
transcription	 factor	 Sox	 8	 is	 strongly	 linked	 to	 the	 expression	 of	
runt‐related	 transcription	 factor	 2	 (Runx2;	 Schmidt	 et	 al.,	 2005),	
where	 Runx2	 (upregulated	 under	 low	CT	 at	 Stages	 3	 and	 5)	 is	 an	
important	regulator	of	mammalian	bone	formation	 (Fowlkes	et	al.,	
2008;	Franceschi	&	Xiao,	2002;	Takarada	et	al.,	2013)	and	arterial	
calcification	 (Ruffenach	 et	 al.,	 2016).	 Two	 other	 transcripts	 puta‐
tively	 encoding	 tumor	 necrosis	 factor	α‐inducing	 proteins	 and	 in‐
terleukin1	receptor‐associated	kinase	4	(IRAK4)	that	were	observed	
to	be	upregulated	under	low	CT	conditions	in	M. edulis	larvae	have	
also	been	 associated	with	osteoblast	 differentiation	 and	bone	 re‐
sorption	(Katsuyama	et	al.,	2014;	Tintut,	Patel,	Parhami,	&	Demer,	
2000).	Tumor	necrosis	factor	α	 is	 involved	in	the	activation	of	nu‐
clear	factor‐kappa	B	(NF‐κB,	upregulated	under	low	CT	at	Stage	5),	a	
protein	whose	activation	is	linked	to	arterial	calcification	in	humans	
(Zhao	et	al.,	2012).	Substrate	limitation	also	induced	upregulation	of	
a	contig	with	sequence	similarity	to	a	zinc	transporter	during	Stage	
5	of	M. edulis	larval	development.	In	mammals,	the	knockout	of	zinc	
transporters	has	been	demonstrated	to	result	in	skeletal	disorders	
(Fukada	et	al.,	2008)	and	the	role	of	zinc	is	established	in	bone	min‐
eralization	 (Yamaguchi,	 1998)	 and	mollusc	 shell	 deposition	 (Tan	&	
Mai,	2001).	Finally,	the	expression	of	a	contig	encoding	putative	C‐
type	lectins	was	also	upregulated	under	low	CT	in	M. edulis	larvae.	C‐
type	lectins	form	important	components	of	the	shell	organic	matrix	
in	molluscs	(Mann,	Edsinger‐Gonzales,	&	Mann,	2012).	For	example,	
the	shell	matrix	protein	perlucin	that	is	expressed	in	M. edulis	larvae	
during	PD	I	formation	contains	a	C‐type	 lectin	domain.	Therefore,	
our	substrate	(CT)	limitation	technique	elicited	an	expression	change	
in	several	contigs	that	can	be	related	to	M. edulis	larval	development.

The	low	number	of	differentially	expressed	contigs	with	respect	
to	 substrate	 limitation	 was	 certainly	 linked	 to	 the	 high	 variability	
in	gene	expression,	as	observed	before	 (Hüning	et	al.,	2013;	Yarra,	
2018),	but	was	also	in	line	with	previous	studies	on	calcifying	larvae	
that	observe	no	significant	changes	in	gene	expression	in	response	to	
simulated	ocean	acidification	(Evans,	Chan,	Menge,	&	Hofmann,	2013;	
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Kelly	et	al.,	2016).	In	contrast,	adult	bivalves	have	been	observed	to	
exhibit	differential	regulation	of	genes	related	to	ion	and	acid–base	
regulation	in	response	to	elevated	seawater	pCO2	(Li,	Huang,	et	al.,	
2016).	 Differences	 in	 larval	 and	 adult	 transcriptomic	 responses	 to	
CO2	in	other	studies	may	reflect	differences	in	acclimation	pCO2,	ex‐
perimental	design	and	individual	variability.	Alternatively,	acid–base	
regulation	may	be	ensued	via	posttranslational	mechanisms,	for	ex‐
ample,	the	translocation	of	membrane‐bound	transport	proteins	to	
compensate	for	increased	transport	of	calcification	substrates	(Roa,	
Munévar,	&	Tresguerres,	2014;	Tresguerres,	Parks,	Wood,	&	Goss,	
2007)	and	phosphorylation	of	ion	transport	proteins	(Flemmer	et	al.,	
2010;	Levitan,	1994)	that	can	induce	their	rapid	activation	(Ramnanan	
&	Storey,	2006;	Rapoport	&	Murad,	1983).	Additionally,	mapping	of	
data	to	a	larval	transcriptome	may	enable	a	deeper	insight	of	differ‐
entially	expressed	transcripts	that	are	nonmantle	specific,	whereas	
the	present	study	utilized	a	 transcriptome	assembled	 for	 the	adult	
Baltic	M. edulis‐like	mantle	tissue.

4.2 | Developmental time course analyses

4.2.1 | HCO3
− transport

In	eukaryotes,	 the	transport	of	HCO3
−	may	occur	via	two	possible	

families	of	membrane‐bound	transport	proteins,	the	SLC4	and	SLC26	

transporters	(Alper	&	Sharma,	2013;	Pushkin	&	Kurtz,	2006).	Within	
the	group	of	SLC4	transporters,	proteins	are	characterized	into	three	
major	groups,	based	on	mechanism	of	action:	Cl−/HCO3

−	exchangers	
(also	known	as	anion	exchangers	(AE),	Na+	−	HCO3

−	cotransporters	
(NBCs)	 and	 Na+‐driven	 Cl−/HCO3

−	 exchangers	 (NDCBE;	 Romero,	
Chen,	Parker,	&	Boron,	2013).	The	Cl−/HCO3

−	exchangers	are	elec‐
troneutral	and	exchange	Cl−	and	HCO3

−	at	1:1	stoichometry,	while	
the	 NBCs	may	 function	 at	 a	 Na+:HCO3

−	 stoichiometry	 of	 1:3/1:2	
(electrogenic)	or	1:1	(electroneutral;	Romero	et	al.,	2013).	The	SLC26	
family	of	transport	proteins	(as	discussed	above)	transports	a	vari‐
ety	of	anions	 including	HCO3

−,	 sulfate	 (SO4
2−),	oxalate,	 and	others	

and	 may	 similarly	 also	 be	 functionally	 characterized	 into	 various	
groups	 depending	 on	 stoichiometry	 (Soleimani,	 2013).	 Therefore,	
depending	on	which	HCO3

−‐transporting	protein	 is	 utilized,	Cl− or 
Na+	is	required	to	provide	the	electrochemical	gradient	required	for	
HCO3

−	transport.	The	provision	of	such	gradients	through	Na+/K+‐
ATPase	 is	discussed	 in	 the	 following	sections.	However,	 if	Cl−	was	
the	coupled	ion	for	HCO3

−	acquisition	during	larval	calcification,	Cl− 
gradients	may	be	maintained	via	proton	exchange,	 cation‐coupled	
Cl−	exchange	(Na+‐K+‐2Cl−	cotransporters,	SLC12)	and	Cl−	channels.

Among	all	the	contigs	putatively	encoding	ion	transport	and	shell	
matrix	 proteins	 investigated	 in	 this	 study,	 a	 sequence	 encoding	 an	
NBC	exhibited	high	transcript	abundance	during	the	larval	develop‐
ment	of	M. edulis	with	a	peak	in	expression	during	early	calcification	

F I G U R E  2  An	ion	transport	model	depicting	the	cellular	transport	processes	of	membrane‐bound	ion	transport	proteins	exhibiting	
elevated	expression	during	Mytilus edulis‐like	larval	development.	The	Na+/K+	ATPase	(NKA)	provides	the	electrochemical	gradient	for	
secondary	ion	transport	via	proteins	such	as	the	Na+/H+	exchanger	(NHE,	SLC9),	sodium	bicarbonate	cotransporters	(NBC,	SLC4),	and	Na+/
Ca2+	exchangers	(NCX,	SLC8).	Additionally,	septate	junctions	may	regulate	the	permeability	of	ions	via	the	paracellular	pathway	(Jonusaite,	
Kelly,	Donini,	2017).	The	putative	precipitation	of	calcium	carbonate	in	an	extracellular	calcification	space	is	described	in	gray.	The	precise	
cellular	location	(apical/basolateral)	and	distribution	of	these	ion	transport	proteins	are	unknown.	In	situ	hybridization	studies	are	necessary	
to	ascertain	the	expression	of	these	transporters	calcifying	epithelia
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F I G U R E  3  Phylogenetic	tree	depicting	relationships	between	bicarbonate	transporter	families	in	Homo sapiens	(human),	Stylophora 
pistillata	(Spi),	Crassostrea gigas	(Cgi),	Strongylocentrotus purpuratus	(Spu),	and	larval	mussels	(TRINITY).	All	sequences,	along	with	accession	
IDs,	are	provided	in	Table	S2.	Starred	sequences	were	differentially	expressed	in	adult	mussels	during	shell	regeneration	(Yarra,	2018),	and	
values	above	the	nodes	represent	bootstrap	values
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(Figure	 1k,	 TRINITY_DN175808_c1_g5).	 The	 peak	 in	 expression	 of	
NBC	encoding	contigs	 is	accompanied	by	the	onset	of	shell	 forma‐
tion.	Following	early	trochophore	development,	expression	levels	of	
this	NBC	sequence	rapidly	decreased.	Within	 the	contigs	encoding	
HCO3

−	transport	in	the	transcriptome	that	exhibited	differential	ex‐
pression	during	larval	development,	two	contigs	clustering	with	SLC4	
(TRINITY_DN167998_c0_g2)	 and	 SLC26	 (TRINITY_DN173725_c0_
g1)	 families	 were	 also	 observed	 to	 be	 upregulated	 during	 induced	
shell	repair	in	adult	Mytilus edulis,	further	supporting	the	role	of	these	
transcripts	in	substrate	acquisition	for	calcification	(Yarra,	2018).

4.2.2 | Ca2+ transport

Prior	to	the	onset	of	calcification	at	the	trochophore	larval	stage,	
Ca2+	 is	not	accumulated	and	stored	by	mussel	 larvae	 (Ramesh	et	
al.,	 2017).	 Rapid	 calcification	 of	 the	 PD	 I	 shell	 in	mussels	 is	 ac‐
companied	 by	 a	 tremendous	 uptake	 of	 calcium	 by	 larvae	within	
a	 few	 hours	 (Ramesh	 et	 al.,	 2017).	 In	 contrast	 to	 larval	 sea	 ur‐
chins	 (Vidavsky	 et	 al.,	 2016;	 Vidavsky,	 Masic,	 Schertel,	Weiner,	
&	 Addadi,	 2015)	 the	 acquisition	 of	 the	 calcification	 substrates	
Ca2+	 and	 HCO3

−	 from	 seawater	 via	 endocytotic	 transport	 does	
not	seem	to	be	a	major	pathway	for	calcium	acquisition	 in	 larval	
mussels,	suggesting	that	uptake	of	Ca2+	likely	occurs	via	transepi‐
thelial	 pathways	 (Ramesh	 et	 al.,	 2017).	Our	 study	 indicated	 that	
in	M. edulis,	 four	 transcripts	 (sarco/endoplasmic	 reticulum	Ca2+‐
ATPase	 [SERCA],	 Ca2+‐ATPases,	 Ca2+	 channels,	 and	 sodium/cal‐
cium	 exchangers	 [NCX])	 were	 involved	 in	 Ca2+	 transport	 during	
larval	development	(Figure	1m–s).	Expression	of	contigs	encoding	
these	four	Ca2+	transport	proteins	was	upregulated	as	ontogenetic	
development	progressed,	with	largest	increases	in	expression	for	
contigs	 encoding	 SERCA	 and	 NCX,	 suggesting	 a	 pivotal	 role	 of	
these	transporters.	In	mammalian	cells,	SERCA	is	crucial	for	main‐
taining	low	intracellular	Ca2+	concentrations	by	sequestering	Ca2+ 
within	 the	 sarco/endoplasmic	 reticulum	 (Arruda	 &	 Hotamisligil,	
2015).	In	adult	bivalves,	SERCA	has	been	suggested	to	play	a	role	
in	 biomineralization	 due	 to	 its	 high	 expression	 (Truebano	 et	 al.,	
2010)	and	localized	expression	of	one	SERCA	isoform	(Fan	et	al.,	
2007)	in	mantle	tissue.	Aside	from	SERCA,	organisms	may	also	em‐
ploy	calcium‐binding	proteins	to	reduce	free	Ca2+	concentrations	
intracellularly.	 Expression	 of	 contigs	 for	 one	 such	 calcium‐bind‐
ing	protein,	calbindin,	was	observed	to	increase	during	the	course	
of	M. edulis	 larval	development	with	a	peak	in	expression	at	PD	I	
stage.	Sodium/calcium	exchangers	(SLC8)	is	a	group	of	membrane‐
bound	transport	proteins	that	facilitate	the	reversible	exchange	of	
three	sodium	ions	(Na+)	for	one	calcium	ion	and	has	an	established	
role	 in	mammalian	osteoblast	 (bone)	 calcification	and	avian	egg‐
shell	mineralization	(Cheidde,	Viera,	Lima,	Saad,	&	Heilberg,	2003;	
Sosnoski	 &	 Gay,	 2007).	 Recently,	 immunolabelling	 techniques	
have	demonstrated	that	an	NCX	protein	 is	particularly	abundant	
within	calcifying	cells	of	the	coral,	Acropora yongei	 (Barron	et	al.,	
2018).	The	simultaneous	elevated	expression	profiles	of	the	puta‐
tive	NKA	and	NCX	during	M. edulis	ontogenetic	development	sup‐
ported	the	role	of	NCX	in	larval	Ca2+	transport.	Finally,	increased	

transcript	abundances	for	contigs	encoding	several	Ca2+	channels	
(Ca2+	 load	activated	Ca2+	channel,	voltage‐dependent	Ca2+	chan‐
nels,	Ca2+	channel	subunit	α)	were	observed	during	M. edulis	 lar‐
val	development.	Such	cellular	pathways	have	also	been	observed	
to	take	part	in	Ca2+ transport	in	the	calcifying	mantle	epithelia	of	
adult	 oysters	 (Sillanpaa	 et	 al.,	 2018).	 Specifically,	 Sillanpaa	 et	 al.	
(2018)	suggest	the	role	of	NCX	proteins	on	the	basolateral	mem‐
brane,	 while	 voltage‐dependent	 Ca2+	 channels	 facilitate	 Ca2+ 
transport	 on	 the	 apical	membranes	of	 the	 calcifying	 epithelia	 in	
adult	oysters,	Crassostrea gigas.

4.2.3 | Na+ transport

The	Na+/K+	 ATPase	 (NKA)	 protein	 is	 an	 active	membrane‐bound	
pump	present	on	the	basolateral	membrane.	It	is	critical	for	mainte‐
nance	of	cell	membrane	potential	and	generates	the	electrochemi‐
cal	gradient	necessary	to	facilitate	the	subsequent	transport	of	ions	
by	 secondary	 transport	 proteins	 (Boron	 &	 Boulpaep,	 2009).	 The	
exchange	 of	 sodium	 and	 hydrogen	 ions	 via	 the	 sodium/hydrogen	
exchanger	(NHE)	belonging	to	the	SLC9	family	is	one	such	second‐
ary	 pathway	 driven	 by	 the	NKA.	 The	 elevated	 coexpression	 pat‐
terns	 of	 a	mitochondrial	 NHE	 and	NKA,	where	 contigs	 encoding	
these	 proteins	 exhibit	 peaks	 in	 expression	 during	 trochophore	
development,	 suggest	 that	 the	NHE	 is	 critical	 for	 proton	 (H+) re‐
moval	(Figure	1u–y).	In	accordance	with	the	upregulation	of	contigs	
encoding	NKA	during	early	shell	 formation,	NKA	activity	has	also	
been	recorded	to	peak	during	early	shell	formation	in	oyster	larvae	
(Frieder,	Applebaum,	Pan,	Hedgecock,	&	Manahan,	 2017).	 Similar	
transport	processes	are	present	in	the	primary	mesenchymal	cells	
in	sea	urchin	larvae	which	are	responsible	for	calcification	and	skel‐
etogenesis	 where	 amiloride‐sensitive	 ion	 transport	 proteins	 such	
as	 the	NHE	have	been	demonstrated	 to	be	significant	 for	cellular	
pH	regulation	(Stumpp	et	al.,	2012).	In	addition	to	elevated	expres‐
sion	of	contigs	encoding	NHEs	at	the	onset	of	 larval	calcification,	
we	 also	 observed	 a	 peak	 in	 expression	 of	 gene	 encoding	Na+/H+ 
exchange	regulatory	factor	 (NHERF).	Na+/H+	exchange	regulatory	
factor	proteins	are	involved	in	regulating	the	function	of	NHE	and	
have	 a	 pivotal	 role	 in	 bone	 formation,	 where	 their	 regulation	 of	
NHEs	 is	 crucial	 for	osteoblast	differentiation	and	strength	 (Liu	et	
al.,	2012).

4.2.4 | H+ transport

Apart	 from	 NHE	 (see	 above),	 several	 contigs	 putatively	 encoding	
H+	 transporters	were	 differentially	 expressed	 during	 larval	 devel‐
opment.	Among	these,	contigs	encoding	VHAs	exhibited	a	peak	in	
expression	during	PD	 I	stage	of	 larval	development.	 In	addition	to	
the	active	 transport	of	H+,	 secondary	H+	 transport	pathways	such	
as	voltage‐gated	hydrogen	channels	also	exhibited	dynamic	expres‐
sion	profiles	during	development	of	M. edulis.	Proton	efflux	via	volt‐
age‐gated	hydrogen	channels	are	responsible	for	pH	homeostasis	in	
calcifying	 coccolithophore	 cells,	 preventing	 cytoplasmic	 acidifica‐
tion	 (Taylor,	 Chrachri,	 Wheeler,	 Goddard,	 &	 Brownlee,	 2011).The	
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elevated	expression	of	H+	transport	pathways	during	larval	calcifica‐
tion	is	consistent	with	the	requirement	to	extrude	protons	that	are	
generated	by	the	mineralization	of	calcium	carbonate	from	HCO3

− 
and	the	observed	increases	in	pH	at	the	site	of	calcification	in	larval	
mussels	(Ramesh	et	al.,	2017).

4.2.5 | Transport of other ions

Parallel	to	the	acquisition	of	substrates	for	calcification	(Ca2+	and	
HCO3

−)	and	removal	of	proton	by‐products	of	calcification,	there	
are	 ion	 transport	 proteins	 that	 are	 essential	 for	 maintenance	 of	
cellular	 electrogenic	 gradients,	 cell	 volume,	 etc.	 During	 the	 on‐
togenetic	development	of	M. edulis,	expression	of	several	contigs	
encoding	chloride	(Cl−)	and	potassium	(K+)	channels	was	observed.	
In	 particular,	 elevated	 expression	 for	 various	 chloride	 channels	
during	PD	I	larval	stage	was	detected	(Figure	S3).	Efflux	of	Cl−	from	
the	basolateral	membrane	due	to	acquisition	of	HCO3

−	in	the	calci‐
fication	space	via	anion	exchangers	may	be	coupled	to	the	elevated	
activity	 of	 Cl−	 channels.	 Alternatively,	 Cl−	 efflux	 may	 occur	 via	
cation‐coupled	 pathways	 (SLC12)	 or	 H+/Cl−	 exchange.	 However,	
contigs	encoding	such	Cl−	 transport	proteins	did	not	exhibit	high	
transcript	 abundances	 during	 larval	 development	 or	 shell	 forma‐
tion	in	M. edulis.

Expression	of	several	K+	channels	was	seen	in	the	larval	tran‐
scriptome.	However,	significant	changes	in	the	expression	of	only	
one	K+	channel	was	observed	during	the	course	of	development,	
the	 inward	 rectifier	K+	 channel	 (Kir,	 Figure	S3).	 Interestingly,	 this	
group	of	membrane‐bound	 transport	 proteins	was	 also	 found	 to	
be	upregulated	during	shell	repair	in	adult	M. edulis	(Yarra,	2018).	
Kir	channels	are	important	in	sustaining	electrochemical	gradients	
and	cell	resting	potential	by	recycling	K+	ions	(Weber,	Cunningham,	
&	Schulte,	2001).	 In	addition,	their	absence	 in	mammalian	osteo‐
blasts	has	been	observed	to	inhibit	osteoblastgenesis	due	to	a	de‐
creased	efficiency	in	production	of	an	extracellular	matrix	(Sacco	
et	al.,	2015).

4.3 | Shell matrix proteins (SMPs)

It	 has	 long	 been	 known	 that	 SMPs	 play	 a	 critical	 role	 in	 calcium	
deposition	and	shell	development	(Weiner	&	Traub,	1984;	Wheeler	
&	 Sikes,	 1984),	 but	 these	 are	 poorly	 characterized	 in	 larvae.	
Interestingly,	approximately,	65%	of	the	SMPs	expressed	in	the	adult	
Baltic	M. edulis‐like	mantle	transcriptome	(Yarra,	2018)	and	ca.	65%	
of	the	SMPs	extracted	from	adult	shells	were	expressed	during	larval	
development.	 Similar	 to	M. edulis‐like	 larvae,	 three	SMPs	 (nacrein,	
EGF‐like,	and	tyrosinase)	have	also	been	observed	to	be	expressed	
in	 other	 bivalve	 larvae	 (Fang	 et	 al.,	 2011;	 Li,	 Zhang,	 et	 al.,	 2016;	
Liu	et	al.,	2015).	Multiple	contigs	with	sequence	similarity	to	other	
adult	shell	SMPs,	but	not	yet	identified	in	larval	shells,	were	found	
to	be	differentially	expressed	throughout	PD	I	development.	Most	
of	the	differentially	expressed	contigs	encoded	domains	involved	in	
structuring	the	shell	or	tissue,	such	as	β‐hexosaminidase,	glycoside	
hydrolase,	chitin	synthase,	chitin	binding,	von	Willebrand	factor	A,	

and	Fibronectin	type	III.	These	were	all	found	to	have	an	increasing	
expression	profile	as	the	shell	field	was	expanding	over	the	surface	
of	 the	 larvae.	 Contigs	 containing	 copper‐binding	 domains	 such	 as	
amine	 oxidase,	 dopamine‐β‐hydroxylase,	 and	 tyrosinase	were	 also	
shown	 to	 increase	 in	expression	as	 the	PD	 I	 shell	was	 formed.	Of	
particular	interest	were	contigs	containing	tyrosinase	domains	that	
showed	a	decrease	 in	expression	right	before	the	end	of	PD	I	 for‐
mation.	Tyrosinase	proteins	are	involved	in	periostracum	formation	
(Zhang,	Xie,	Huang,	Chen,	&	Zhang,	2006),	and	the	drop	in	expres‐
sion	of	contigs	containing	tyrosinase	domains	may	reflect	the	com‐
pletion	of	periostracum	formation	in	PD	I.

Other	SMPs	 linked	 to	mineral	deposition	and	crystallographic	
control	 include	proteases	and	protease	 inhibitors	 that	behave	an‐
tagonistically,	 where	 the	 former	 are	 known	 to	 be	 important	 for	
crystal	nucleation	(Hershey	et	al.,	2016;	Tiaden	et	al.,	2012).	During	
the	formation	of	the	Baltic	M. edulis‐like	PD	I	shell,	contigs	contain‐
ing	protease	inhibitor	domains	such	as	BPTI/Kunitz	and	Kazal	were	
increasing	 in	 expression	 throughout	 shell	 formation.	 BPTI/Kunitz	
domain‐containing	contigs	exhibited	a	peak	 in	expression	prior	to	
the	completion	of	PD	I,	supporting	the	domains	involvement	in	ter‐
minating	crystal	growth.	Conversely,	the	contig	with	the	protease	
inhibitor	domain	β‐lactamase	(Gigasin	6)	was	highly	expressed	be‐
fore	 larval	 calcification,	 suggesting	 a	 putative	 involvement	 in	 ini‐
tial	crystal	deposition.	The	contig	containing	the	protease	domain,	
peptidase	C1A,	was	observed	to	increase	in	expression	throughout	
shell	 formation,	 thus	 not	 following	 the	 pattern	 of	 other	 protease	
and	protease	 inhibitors.	However,	 this	may	be	because	peptidase	
C1A	domains	occur	 in	multifunctional	 proteins	which	 are	 also	 in‐
volved	in	immune	functions.

Although	 bivalve	 larval	 shells	 are	 composed	 of	 only	 one	 cal‐
cium	carbonate	polymorph,	aragonite	 (Kudo	et	al.,	2010;	Yokoo	et	
al.,	 2011),	 several	 SMPs	 (tyrosinase,	 gigasin‐like	 and	 alveoline‐like	
proteins)	that	were	previously	identified	in	the	calcitic	fibrous	prism	
structures	of	adult	mytilid	shells	(Gao	et	al.,	2015;	Liao	et	al.,	2015)	
were	 also	 expressed	 in	 the	Baltic	M. edulis‐like	 developing	 larvae.	
This	emphasizes	the	need	for	further	investigation	into	larval	stages	
over	 a	 longer	 developmental	 time	 period	 to	 determine	 whether	
there	is	specific	SMP	partitioning	with	development.

5  | CONCLUSIONS

By	 rearing	mussel	 larvae	 under	 conditions	 of	 substrate	 limitation	
for	 calcification	 and	 analyzing	 differential	 gene	 expression	 pat‐
terns,	we	were	able	to	 identify	a	membrane‐bound	transport	pro‐
tein	 potentially	 involved	 in	 HCO3

−	 acquisition,	 belonging	 to	 the	
SLC26	 family	 of	 anion	 transporters	 and	 other	 candidate	 genes	
previously	 identified	 in	human	biomineralization.	 Interestingly,	the	
present	study	identifies	only	a	small	subset	of	contigs	to	be	differ‐
entially	expressed	under	substrate	limitation.	Although	this	may	be	
improved	 by	 a	 stronger	 CT	 treatment	 (>50%	 decrease	 relative	 to	
control),	higher	sequencing	depth,	and	 level	of	replication,	bivalve	
larvae	may	possess	a	fixed	capacity	to	modify	their	transcriptomic	
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developmental	program.	This	is	consistent	with	previous	studies	on	
bivalve	larval	development	that	observed	no	significant	changes	in	
gene	expression	 in	 response	 to	 induced	acid–base	stress	 (Kelly	et	
al.,	2016).	Our	data	demonstrated	an	increased	expression	of	con‐
tigs	encoding	for	Ca2+	and	HCO3

−‐transporting	proteins	during	lar‐
val	development,	 in	particular,	once	 larval	shell	 formation	started.	
In	particular,	the	dynamic	expression	patterns	and	high	expression	
levels	of	contigs	encoding	SERCA,	NCX,	and	NBC	hint	toward	the	
role	of	these	ion	transport	pathways	in	bivalve	larval	calcification.	
Similarly,	the	analyses	of	SMP	expression	patterns	revealed	several	
proteins	with	hypothesized	roles	in	shell	structure,	crystallographic	
control,	and	periostracum	deposition	to	be	upregulated	during	larval	
development.	To	date,	functional	analyses	using	RNA	interference	
techniques	have	been	limited	to	SMPs	(Fang	et	al.,	2011;	Funabara	
et	al.,	2014;	Suzuki	et	al.,	2009).	However,	knock	out/knock	down	
techniques	are	required	to	establish	the	role	of	candidate	ion	trans‐
porters	 in	 larval	 calcification.	 The	 identification	 of	 candidate	 bi‐
omineralization	genes	in	this	study	paves	the	way	for	future	in	depth	
investigations.	Heterologous	expression	techniques	 in	conjunction	
with	electrophysiology	 techniques	should	be	used	 to	characterize	
the	 substrate	 specificity	 and	 stoichiometry	of	 these	 ion	 transport	
genes	(in	particular,	the	SLC26A11	ortholog)	and	their	complex	in‐
teractions	with	SMPs	to	produce	a	robust	larval	shell.
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