

Ensemble Data Assimilation

for Coupled Models of the Earth System

Lars Nerger, Qi Tang, Longjiang Mu, Mike Goodliff

Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Bremerhaven, Germany

Sun Yat-sen University, Zhuhai, China, November 5, 2019

Overview

- Ensemble data assimilation
- Importance of software
- Coupled data assimilation
	- Challenges in two application examples

Data assimilation

Lars Nerger et al. – Ensemble DA with PDAF

OANI

Data Assimilation

Methodology to combine model with real data

- § Optimal estimation of system state:
	- initial conditions (for weather/ocean forecasts, ...)
	- state trajectory (temperature, concentrations, ...)
	- parameters (ice strength, plankton growth, ...)
	- fluxes (heat, primary production, ...)
	- boundary conditions and 'forcing' (wind stress, …)
- More advanced: Improvement of model formulation
	- Detect systematic errors (bias)
	- Revise parameterizations based on parameter estimates

Ensemble Data Assimilation

Ensemble Kalman Filters (EnKFs) & Particle Filters

- \rightarrow Use ensembles to represent probability distributions (uncertainty)
- \rightarrow Use observations to update ensemble

Lars Nerger et al. – Ensemble DA with PDAF

Data Assimilation Group @ AWI: Research Interests

- Ensemble-based data assimilation algorithms
	- Understanding, improvement and development of algorithms
	- In particular for high-dimensional and nonlinear systems
	- Ensemble Kalman filters, particle filters, ensemble variational schemes
- Applicability of ensemble assimilation methods to complex models
	- **→ Software PDAF**
- Applications of data assimilation
	- Ocean physics, sea ice, biogeochemistry
	- Coupled Earth system models
	- \rightarrow Applications provide insight into skill of assimilation method (cannot assessed purely mathematically)

PDAF: A tool for data assimilation

- PDAF Parallel Data Assimilation Framework
	- a program library for ensemble data assimilation
	- **•** provides support for parallel ensemble forecasts
	- § provides filters and smoothers fully-implemented & parallelized (EnKF, LETKF, LESTKF, NETF, PF … easy to add more)
	- easily useable with (probably) any numerical model
	- run from laptops to supercomputers (Fortran, MPI & OpenMP)
	- Usable for real assimilation applications and to study assimilation methods
	- first public release in 2004; continued development
	- ~400 registered users; community contributions

Open source: Code, documentation, and tutorial available at

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118

3 Components of Assimilation System

 Q Λ

 \rightarrow Explicit interface

▶ Indirect exchange (module/common)

Nerger, L., Hiller, W. Computers and Geosciences 55 (2013) 110-118

Augmenting a Model for Data Assimilation

Augmenting a Model for Data Assimilation

Couple PDAF with model

- Modify model to simulate ensemble of model states
- Insert correction step (analysis) to be executed at prescribed interval
- Run model as usual, but with more processors and additional options

Ensemble Filter Analysis Step

The Ensemble Kalman Filter (EnKF, Evensen 94) er (EnKF, Evensen 94*)*
————————————————————————— H*k*P*^f k*H*^T ^k* ⁺ ^R*^k* ⌅ ^R*^m*⇥*^m* (55) 1 *N k*H*^T ^k* ⁺ ^R*^k* ⌅ ^R*^m*⇥*^m* (55) 111an 1 liter (Litra), Evensen 94*)*
———————————————————— ⇤

⇧

Ensemble		
Ensemble		
Covariance matrix		\n $\mathbf{P}_k^f := \frac{1}{N-1} \sum_{l=1}^N \left(\mathbf{x}_k^{f(l)} - \overline{\mathbf{x}}_k^f \right) \left(\mathbf{x}_k^{f(l)} - \overline{\mathbf{x}}_k^f \right)^T$ \n
Ensemble mean (state estimate)		\n $\mathbf{x}_k^a := \frac{1}{N} \sum_{l=1}^N \mathbf{x}_k^{a(l)}$ \n

⇤

Analysis step: *k* sten alysis
. \overline{e}

v
Update each ensemble member *a* ensemble member $ember$ *l* each ensemble memb *^k* ^x*^a*

Kalman filter

Forecast

Analysis

$$
\mathbf{x}_{k}^{a(l)} = \mathbf{x}_{k}^{f(l)} + \mathbf{K}_{k} \left(\mathbf{y}_{k}^{(l)} - \mathbf{H}_{k} \mathbf{x}_{k}^{f(l)} \right)
$$

$$
\mathbf{K}_{k} = \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} \left(\mathbf{H}_{k} \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} + \mathbf{R}_{k} \right)^{-1}
$$

 $\ddot{}$

 $\frac{1}{2}$ is the use $\frac{1}{2}$ a more efficient formulation) H*k*P*^f k*H*^T ^k* ⁺ ^R*^k* ⌅ ^R*^m*⇥*^m* (54) m ^{*k*} efficient ⇤ H*k*P*^f k*H*^T ^k* + R*^k* (in practice we use a more efficient formulation) **Expensive to compute**

⌥⌅ (50) If elements of r are obt *a I*f elements of **x** are c
• *K* contains If elements of **x** are observed:

- K contains
	- womanis
• observed rows

⌅*T*

(56)

• unobserved rows

ovarian
ח_' Unobserved variables updated through cross-covariances in **P** (linear regression)

Current algorithms in PDAF

PDAF originated from comparison studies of different filters

Filters and smoothers

- EnKF (Evensen, 1994 + perturbed obs.)
- (L)ETKF (Bishop et al., 2001)
- SEIK filter (Pham et al., 1998)
- ESTKF (Nerger et al., 2012)
- NETF (Toedter & Ahrens, 2015)

All methods include (except PF)

- global and localized versions
- smoothers

Model binding

• MITgcm

Toy models

• Lorenz-96, Lorenz63

• Generate synthetic observations

Not yet released:

- serial EnSRF
- EWPF

Not yet released:

- AWI-CM model binding
- NEMO model binding

PDAF Application Examples

RMS error in surface temperature **MITgcm-REcoM:** Total chlorophyll concentration June 30, 2012 **HBM-ERGOM**: 65°N global ocean color Coastal 1.6 assimilation of assimilation (Himansu Pradhan) SST, in situ and 12 ocean color data 0.8 (Svetlana Losa, 55° Michael Goodliff) 0.4 Different models – same assimilation softwareECHAM6-FESOM coupled model + external applications & users, like **AWI-CM**: **Fig. 1** Grids correspondcoupled • MITgcm sea-ice assim (NMEFC Beijing) atmos.-ocean • Geodynamo (IPGP Paris, A. Fournier) assimilation 50 %; areas with a land fraction • TerrSysMP-PDAF (hydrology, FZ Juelich) (Qi Tang, between 0 and 50 % are shown in *light green* • CMEMS Baltic-MFC (operational, DMI/BSH/SMHI) Longjiang Mu) • CFSv2 (J. Liu, IAP-CAS Beijing) 2013 and uses total wavenumbers up to $63, 63, 63, ...$ previous model intercomparisons (see e.g., Sidorenko et al. • NEMO (U. Reading , P. J. van Leeuwen) sponds to about 1.85 × 1.85 degrees horizontal resolution; 2011; Danabasoglu et al. 2011; Danabasoglu et al. 2014; Danabasoglu et a the atmosphere comprises 47 levels and has its top at 0.01 competitive tool for studying the ocean general circulation.

Lars Nerger et al. - Ensemble DA with PDAF tars iverger et al.

Coupled Models and Coupled Data Assimilation

Coupled models

- Several interconnected compartments, like
	- Atmosphere and ocean
	- Ocean physics and biogeochemistry (carbon, plankton, etc.)

Coupled data assimilation

- Assimilation into coupled models
	- Weakly coupled: separate assimilation in the compartments e comnartments a the exception of the T63 land-sea mask, which is adjusted
	- Strongly coupled: joint assimilation of the compartments im nariments 'truth' and the f \sim The ECHAM6 is adjusted accordingly. This adjustment is adjusted accordingly.
		- → Use cross-covariances between fields in compartments a compariments routin land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
	- Plus various "in between" possibilities ...

2 compartment system – strongly coupled DA

Lars Nerger et al. – Ensemble DA with PDAF

2 compartment system – weakly coupled DA

Example 1

Assimilation into the coupled

atmosphere-ocean model AWI-CM

(Qi Tang)

Project: ESM – Advanced Earth System Modeling Capacity

Assimilation into coupled model: AWI-CM

model Two senarate executables fr discharge model (Hagemann and Dümenic 1997). is comprehensively described in the state in \mathbb{R}^n $\frac{1}{2}$ short model description here and ment-Two senarate executables for atmosphere and d discharge model (Hagemann and Dümenil 1997). Two separate executables for atmosphere and ocean

 \sim since with the simulated climated cl goal. Develop dala assimi 2013), the T63S-domain assimilatio \mathbf{t} settings which are different in the coupled setup. on memodology for ("stronalv-coupled") when \sim with the poles over \mathcal{C} \sim \sim \sim \sim \sim improves but changes are incremental \sim cross-domain assimilation ("strongly-coup tion those settings which are different in the coupled setup. **Goal: Develop data assimilation methodology for** with the poles over Greenland and the Antarctic continent and the Antarctic conti **cross-domain assimilation ("strongly-coupled")**

 \sum_{α} ling AWI-CM: Sidorenko et al., Clim Dyn 44 (2015) 757 to allow for a better fit between the grids of the grids of the ocean and ω \mathcal{N} and is gradually refined to about 25 km in \mathcal{N} the open ocean and is gradually refined to about 25 km in $\mathcal{L}_{\mathcal{A}}$

Data Assimilation Experiments

Model setup

- Global model
- ECHAM6: T63L47 $\epsilon = 0.5$ is $\epsilon = 0.5$ in FeSOM is $\epsilon = 0.5$
- **•** FESOM: resolution 30-160km (in km). *Dark green* areas of the

Data assimilation experiments on experimen in *light green*

- Observations
	- Satellite SST
	- Profiles temperature & salinity
- Updated: ocean state (SSH, T, S, u, v, w)
- Assimilation method: Ensemble Kalman Filter (LESTKF) the atmosphere compart and the distribution of the distribution of μ 201 competitive tool for studying the ocean general circulation. The ocean general circulation of \mathcal{L}
- Ensemble size: 46 model JSBACH (Stevens et al. 2013) and a hydrological \mathcal{S}
- Simulation period: year 2016, daily assimilation update Since with higher resolution "the simulated climate te and model description here and men-
- Run time: 5.5h, fully parallelized using 12,000 processor cores

Lars Nerger et al. – Ensemble DA with PDAF tational efficiency. All standard settings are retained with Lars iverger et al. – Ensemble DA with PL

FESOM mesh resolution

Offline coupling - Efficiency

Offline-coupling is simple to implement but can be very inefficent

Example:

Timing from atmosphere-ocean coupled model (AWI-CM) with daily analysis step:

Model startup: 95 s. Integrate 1 day: 28 s Model postprocessing: 14 s

overhead

Analysis step: 1 s

Restarting this model is ~3.5 times more expensive than integrating 1 day

 \rightarrow avoid this for data assimilation

Execution times (weakly-coupled, DA only into ocean)

MPI-tasks

- ECHAM: 72
- FESOM: 192
- Increasing integration time with growing ensemble size (11%; more parallel communication; worse placement)
- some variability in integration time over ensemble tasks

cores Important factors for good performance

- Need optimal distribution of programs over compute nodes/racks (here set up as ocean/atmosphere pairs)
- Avoid conflicts in IO (Best performance when each AWI-CM task runs in separate directory)

Assimilate sea surface temperature (SST)

SST on Jan 1st, 2016

SST difference: observations-model

- Satellite sea surface temperature (level 3, EU Copernicus)
- Daily data
- Data gaps due to clouds
- Observation error: 0.8 °C
- Localization radius: 1000 km

Large initial SST deviation due to using a coupled model: up to 10° C

DA with such a coupled model is unstable!

omit SST observations where $|SST_{obs} - SST_{ens mean}| > 1.6 °C$

(30% initially, <5% later)

SST assimilation: Effect on the ocean

SST difference (obs-model): strong decrease of deviation

Subsurface temperature difference (obs-model); all the model layers at profile locations

Assimilate subsurface observations: Profiles

Profile locations on Jan 1st, 2016

- Temperature and Salinity
- EN4 data from UK MetOffice
- Daily data
- Subsurface down to 5000m
- About 1000 profiles per day
- Observation errors
	- Temperature profiles: $0.8 \degree C$
	- Salinity profiles: 0.5 psu
- Localization radius: 1000 km

SST assimilation: Effect on the ocean

Subsurface temperature difference (obs-model); all the model layers at profile locations

smaller deviations than for SST assimilation

Assimilation effect: RMS errors

Overall lowest errors with combined assimilation

• But partly a compromise

Mean increments

Mean increments (analysis – forecast) for days 61-366 (after spinup) \rightarrow non-zero values indicate regions with possible biases

Assimilation Effect on the Atmosphere

Atmosphere reacts quickly on the changed ocean state

Does it make the atmosphere more realistic?

Effect on Atmospheric State (annual mean)

Lars Nerger et al. – Ensemble DA with PDAF

Strongly coupled: Parallelization of analysis step

We need innovation: $d = Hx - y$

Observation operator links different compartments

- 1. Compute part of **d** on process 'owning' the observation
- 2. Communicate **d** to processes for which observation is within localization radius

Lars Nerger et al. – Ensemble DA with PDAF

Example 2

Weakly- and Strongly Coupled Assimilation to

Constrain Biogeochemistry with Temperature Data

(MERAMO – Mike Goodliff)

Cooperation with German Hydrographic Agency (BSH) (Ina Lorkowski, Xin Li, Anja Lindenthal, Thoger Brüning)

Coastal Model Domain

Biogeochemical model: ERGOM

Lars Nerger et al. – Ensemble DA with PDAF

O'ANI

Observations – Sea Surface Temperature (SST)

- 12-hour composites on both model grids
- Vastly varying data coverage (due to clouds)
- Effect on biogeochemistry?

 Q Λ

Comparison with assimilated SST data (4-12/2012)

RMS deviation from SST observations up to \sim 0.4 $\,^{\circ}$ C

Coarse grid:

Increasing error-reductions compared to free ensemble run

Fine grid:

- much stronger variability
- ^l Forecast errors sometimes reach errors of free ensemble run

RMS errors (deg. C)

Temperature RMSD

Influence of Assimilation on Surface Temperature

2 ways of influence:

- Indirect *weakly-coupled assimilation* model dynamics react on change in physics
- Direct *strongly-coupled assimilation* use cross-covariances between surface temperature and biogeochemistry

Weakly & strongly coupled effect on biogeochemical model

Goodliff et al., Ocean Dynamics, 2019, doi:10.1007/s10236-019-01299-7

Forecast Choice of variable in strongly coupled assimilation *a*(*l*) *a*(*l*)

- Chlorophyll is lognormally distributed *ⁱ* = *Mi,i*¹[x *ⁱ* = *Mi,i*¹[x *ⁱ*¹] + (*l*) *ⁱ*¹] + (*l*)
- Ensemble Kalman filter $\overline{}$ Analysis
	- Optimality for normal distributions *{*y *^k , l* = 1*,...,N}* (49) *{*y *^k , l* = 1*,...,N}* (49)

x *a*(*l*)

 \overline{a}

• Linear regression between observed and unobserved variables b *bserved* ression between observed and unobserved variables *k* bserved and unobserved variables

a(*l*)

ⁱ (48)

ⁱ (48)

→ Apply strongly-coupled DA with logarithm on concentrations? α coupled DA with I log arithm on co x *a*(*l*) *^k* ⁼ ^x*^f*(*l*) *^k* ⁺ K˜ *^k* ⇤ bgarithm on coi

Kalman filter
$$
\mathbf{x}_{k}^{a(l)} = \mathbf{x}_{k}^{f(l)} + \mathbf{K}_{k} \left(\mathbf{y}_{k}^{(l)} - \mathbf{H}_{k} \mathbf{x}_{k}^{f(l)} \right)
$$

$$
\mathbf{K}_{k} = \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} \left(\mathbf{H}_{k} \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} + \mathbf{R}_{k} \right)^{-1}
$$

$$
\mathbf{K}_{k} = \mathbf{X}_{k}^{\prime} \left(\mathbf{H}_{k} \mathbf{X}_{k}^{\prime} \right)^{T} \left(\mathbf{H}_{k} \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} + \mathbf{R}_{k} \right)^{-1}
$$
model
observations

Choice of variable in strongly coupled assimilation

- locally unrealistically high and low concentrations
	- \rightarrow Linear regression with lognormal concentration not general solution

- Larger effect in particular in North Sea
- Too high in Gulf of Finland

Summary

- Coupled data assimilation:
	- Weakly-coupled easy to apply
		- But changing one part can disturb the other
	- Strongly-coupled depends on cross-covariances
		- EnKF uses linear regression variables not well defined
- Unified software helps to bring new developments into usage
	- PDAF Open source available at **http://pdaf.awi.de**

- http://pdaf.awi.de
- Nerger, L., Hiller, W. *Software for Ensemble-based DA Systems – Implementation and Scalability*. Computers and Geosciences 55 (2013) 110-118
- Nerger, L., Hiller, W., Schröter, J.(2005). *PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering*, Proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology, Reading, UK, 25 - 29 October 2004, pp. 63-83.

