Breaking the ice Fracture angles with viscous-plastic sea ice rheologies

Damien Ringeisen, Martin Losch and Bruno Tremblay

ECCOMAS YIC 2021 — 2021-07-07 – MS18 – 17h15

Motivation

We observe deformation lines in the Arctic sea ice, called the Linear Kinematic Features or LKFs.

Figure: Shear Deformation - From [Rampal et al.](#page-28-0) [\(2019\)](#page-28-0) — under CC-BY license.

Motivation

We observe deformation lines in the Arctic sea ice, called the Linear Kinematic Features or LKFs.

LKFs influence

- Exchange of Energy and Moisture
- Creation of new ice \rightarrow in leads
- Creation of thick ice \rightarrow in ridges
- \rightarrow Influence the mass balance

Figure: Shear Deformation — From [Rampal et al.](#page-28-0) [\(2019\)](#page-28-0) — under CC-BY license.

Motivation

We observe deformation lines in the Arctic sea ice, called the Linear Kinematic Features or LKFs.

LKFs influence

- Exchange of Energy and Moisture
- Creation of new ice \rightarrow in leads
- Creation of thick ice \rightarrow in ridges
- \rightarrow Influence the mass balance

One (of the possible) metric

The LKFs intersection angles, or their half angles, called fracture angles

Figure: Shear Deformation — From [Rampal et al.](#page-28-0) [\(2019\)](#page-28-0) — under CC-BY license.

Models and observation disagree on LKFs intersection angles

Figure: PDFs of LKFs half-intersection angles — Derived from [Hutter and Losch \(2020\)](#page-0-0) – under CC-BY license.

Models and observation disagree on LKFs intersection angles

Figure: PDFs of LKFs half-intersection angles — Derived from [Hutter and Losch \(2020\)](#page-0-0) – under CC-BY license.

Goals

We want

 \blacksquare to link the sea ice models to the angles

to know how to create smaller angles in sea ice models

to reproduce the LKFs patterns in sea ice dynamical models

Idealized experiment. . .

Idealized experiment...

Idealized experiment. . .

Idealized experiment. . .

. . . which we can observe on the field.

Credit: Lukas Piotrowski Credit: Grace Shephard (distributed via imaggeo.egu.eu) CC-BY-NC

Viscous-Plastic (VP) sea ice model

The de facto standard $-$ the most widely used $-$ sea ice rheological model today

2 Components

- Yield curve: Stresses in plastic failure **Viscous inside the yield curve**
- **Flow rule: Deformation at failure**

Theory of fracture angles

Coulomb Angle θ_c [\(Coulomb, 1773\):](#page-0-0)

The fracture angle depends on the slope of the yield curve F.

$$
\theta_C = \frac{1}{2} \arccos \left(-\frac{\partial \sigma_{\text{II},F}}{\partial \sigma_{\text{I}}} \right)
$$

Roscoe Angle θ_R [\(Roscoe, 1970\):](#page-0-0)

The fracture angle depends on the flow rule (Plastic potential G)

$$
\theta_R = \frac{1}{2} \arccos \left(-\frac{\partial \sigma_{\text{II},\text{G}}}{\partial \sigma_{\text{I}}} \right)
$$

Arthur Angle θ_A [\(Arthur et al., 1977\):](#page-0-0)

The fracture angle is the mean of θ_C and θ_R .

Note: with a normal flow rule, then $\theta_C = \theta_R = \theta_A$

[Ringeisen et al. \(2019\)](#page-0-0)

- Angle follow the theory
- Flow rule is coupled to the yield curve
- Does not allow for angles $< 30°$

[Ringeisen et al. \(2019\)](#page-0-0)

- Angle follow the theory
- Flow rule is coupled to the yield curve
- Does not allow for angles $< 30°$

[Ringeisen et al. \(2019\)](#page-0-0)

- Angle follow the theory
- Flow rule is coupled to the yield curve
- Does not allow for angles $< 30°$

[Ringeisen et al. \(2021\)](#page-0-0)

- Angles follow Roscoe theory θ_R
- **Poorer numerical convergence**
- Allows for angles $< 30^\circ$

Alternative yield curves

[Ip et al. \(1991\)](#page-0-0) — [Zhang and Rothrock \(2005\)](#page-0-0)

Mohr-Coulomb yield curve with non-normal flow rule

Ringeisen et al. (2021, in prep)

- Formulation is important \vert p et al. (1991)
- Angles follow the Arthur angles θ_A
- Allows for angles $< 30^\circ$

Teardrop and Parabolic Lens yield curves – normal flow rules

Ringeisen et al. (2021, in prep)

- Correspond to the theory
- Flow rule is coupled to the yield curve
- Allows for angles $< 30^\circ$

Summary — Contact me for more info

Deformation lines in sea ice

- Intersection angles are larger in models than observed.
- $\blacksquare \rightarrow$ Viscous-Plastic rheological model

VP yield curves — Flow rules

- **Elliptical normal and non-normal**
- Mohr–Coulomb (MC) non-normal
- \blacksquare Teardrop normal flow rule

Idealized numerical experiment

- Some rheologies allow for smaller angles
- **MC** creates fractures with Arthur angles
- **Investigating rheologies is necessary**
- \blacksquare Next step: test in pan-arctic setups
	- Not only uni-axial compression

References I

- Arthur, J. R. F., Dunstan, T., Al-Ani, Q. a. J. L., and Assadi, A. (1977). Plastic deformation and failure in granular media. Géotechnique, 27(1):53-74.
- Coulomb, C. (1773). Test on the applications of the rules of maxima and minima to some problems of statics related to architecture. Mem Math Phys, 7:343–382.
- Hutter, N. and Losch, M. (2020). Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations. The Cryosphere, 14(1):93–113.
- Ip, C. F., Hibler, W. D., and Flato, G. M. (1991). On the effect of rheology on seasonal sea-ice simulations. Annals of Glaciology, 15:17–25.
- Rampal, P., Dansereau, V., Olason, E., Bouillon, S., Williams, T., Korosov, A., and Samaké, A. (2019). On the multi-fractal scaling properties of sea ice deformation. The Cryosphere, 13(9):2457-2474. Publisher: Copernicus GmbH.
- Ringeisen, D., Losch, M., Tremblay, L. B., and Hutter, N. (2019). Simulating intersection angles between conjugate faults in sea ice with different viscous–plastic rheologies. The Cryosphere, 13(4):1167–1186.
- Ringeisen, D., Tremblay, L. B., and Losch, M. (2021). Non-normal flow rules affect fracture angles in sea ice viscous–plastic rheologies. The Cryosphere, 15(6):2873–2888. Publisher: Copernicus GmbH.
- Roscoe, K. H. (1970). The Influence of Strains in Soil Mechanics. Géotechnique, 20(2):129–170.
- Zhang, J. and Rothrock, D. A. (2005). Effect of sea ice rheology in numerical investigations of climate. Journal of Geophysical Research: Oceans, 110(C8):C08014.

