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Abstract. Many palaeoclimate proxies share one challeng-
ing property: they are not only driven by the climatic vari-
able of interest, e.g. temperature, but they are also influenced
by secondary effects which cause, among other things, in-
creased variability, frequently termed noise. Noise in individ-
ual proxy records can be reduced by averaging the records,
but the effectiveness of this approach depends on the corre-
lation of the noise between the records and therefore on the
spatial scales of the noise-generating processes. Here, we re-
view and apply this concept in the context of Antarctic ice-
core isotope records to determine which core locations are
best suited to reconstruct local- to regional-scale tempera-
tures. Using data from a past-millennium climate model sim-
ulation equipped with stable isotope diagnostics we intrigu-
ingly find that even for a local temperature reconstruction
the optimal sampling strategy is to combine a local ice core
with a more distant core ∼ 500–1000 km away. A similarly
large distance between cores is also optimal for reconstruc-
tions that average more than two isotope records. We show
that these findings result from the interplay of the two spa-
tial scales of the correlation structures associated with the
temperature field and with the noise generated by precipita-
tion intermittency. Our study helps to maximize the usabil-
ity of existing Antarctic ice cores and to optimally plan fu-
ture drilling campaigns. It also broadens our knowledge of
the processes that shape the isotopic record and their typical
correlation scales. Finally, many palaeoclimate reconstruc-

tion efforts face the similar challenge of spatially correlated
noise, and our presented method could directly assist further
studies in also determining optimal sampling strategies for
these problems.

1 Introduction

The oxygen and hydrogen isotopic composition of firn and
ice recovered from polar ice cores is a key proxy for past
near-surface atmospheric temperature changes (Dansgaard,
1964; Lorius et al., 1969; Masson-Delmotte et al., 2008;
Sjolte et al., 2011). Although the physical mechanisms that
link local changes in temperature to the isotopic composition
of precipitated snow are generally well understood (Dans-
gaard, 1964; Craig and Gordon, 1965; Jouzel and Merlivat,
1984) and can be modelled with general circulation models
(Joussaume et al., 1984; Werner et al., 2011, 2016; Sjolte
et al., 2011; Goursaud et al., 2018), the quantitative interpre-
tation of ice-core isotope variability, in terms of temperature
variability, is complicated by second-order processes that in-
fluence the isotopic record, adding noise (Münch and Laep-
ple, 2018).

Specifically, the isotopic record that is derived from an ice
core is the result of a chain of processes: (1) atmospheric
temperature changes along with (2) isotopic fractionation
during the pathway from atmospheric moisture to precipita-
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tion, (3) the effect of variable and intermittent precipitation,
and finally (4) local depositional and post-depositional ef-
fects. As we outline in the following, each element of this
chain can be associated with a typical spatial length scale
over which it is correlated.

Atmospheric temperature variations drive the isotopic
composition fractionation of the atmospheric moisture along
its pathway to the final stage of precipitation (Dansgaard,
1964; Jouzel and Merlivat, 1984). The spatial coherence
of the temperature-related isotopic signal in precipitation is
hence determined by the spatial coherence of the variations
of the atmospheric temperature field itself. Typical spatial
decorrelation scales for temperature anomalies are on the or-
der of &1000 km (Jones et al., 1997), which implies that ice
cores distributed on spatial scales below ∼ 1000 km should
typically record a similar, i.e. correlated, temperature sig-
nal. However, the temporal variability of the isotopic com-
position in the local atmospheric moisture also depends on
the variability of the atmospheric circulation, since differ-
ent air masses may exhibit different source regions and dis-
tillation pathways (Schlosser et al., 2004; Sodemann et al.,
2008; Birks and Edwards, 2009; Küttel et al., 2012). In ad-
dition, the isotopic composition profile across a deposited
layer of snow will not directly reflect the temporal variabil-
ity of the atmospheric isotopic signal due to the intermit-
tent nature of precipitation (Schleiss and Smith, 2015). By
this, the initial isotope signal is weighted with the amount
of precipitation, which introduces bias (Steig et al., 1994;
Laepple et al., 2011) and adds additional variability to the
isotopic record (Persson et al., 2011; Casado et al., 2020).
The latter two processes are linked to atmospheric dynamics,
and their typical spatial scales range from the mesoscale (i.e.
tens of kilometres), driven by topography and orographic ef-
fects, to synoptic scales of hundreds of kilometres associated
with cyclonic activity and the movement of high- and low-
pressure systems. Finally, in polar conditions, the precipi-
tated snow does not directly settle but is constantly eroded,
blown away, and redeposited. These depositional processes
have been shown to give rise to stratigraphic noise in the iso-
topic record (Fisher et al., 1985; Münch et al., 2016; Laepple
et al., 2016), which exhibits a small-scale decorrelation scale
of a few metres (Münch et al., 2016). We further note that the
final isotopic record is also influenced by potential exchange
processes at the surface and by densification and diffusion
within the snow and ice, which are, however, not within the
scope of this article.

Both the effect of precipitation intermittency and strati-
graphic noise constitute a significant relative contribution to
the overall isotopic variability in the form of noise: around a
deep drilling site in Dronning Maud Land, East Antarctica,
stratigraphic noise was shown to amount to approximately
50 % of the total variance at the seasonal timescale (Münch
et al., 2016), but quantitative estimates for other Antarctic re-
gions are still missing. A similarly high relative contribution
is expected from precipitation intermittency (Laepple et al.,

2018), which probably has a larger impact further inland than
compared to coastal regions (Casado et al., 2020; Hatvani
and Kern, 2017).

The hierarchy of the different spatial scales of the pro-
cesses influencing an isotope record determines the effective-
ness of reducing the overall noise, since a reduction in the
noise level by averaging records will depend on the spatial
correlation scale of the different noise sources. For example,
if an isotope record were only shaped by temperature varia-
tions and stratigraphic noise, it would be sufficient to average
records spaced only tens of metres apart, as this would en-
sure highly correlated temperature signals but uncorrelated
stratigraphic noise between the records. However, compar-
ing the correlation-based signal-to-noise ratios derived from
nearby isotope records (Münch et al., 2016, 2017) with the
signal-to-noise ratios estimated from analysing the records’
temporal variability (Laepple et al., 2018) shows that the
reproducibility on a local scale does not necessarily imply
a climatic, i.e. temperature-driven, origin. Instead, the ad-
ditional noise sources from circulation variability and pre-
cipitation intermittency are likely to exhibit larger decorre-
lation lengths than the stratigraphic noise (Laepple et al.,
2018; Münch and Laepple, 2018). Taking this into account,
we expect there to be an optimal length scale which lies be-
tween the decorrelation scales of the local noise and of the
temperature and which results in a trade-off between aver-
aging out atmospheric circulation and precipitation intermit-
tency effects, while also ensuring a sufficient coherence in
the recorded temperature signal.

The aim of the present study is to use data from a climate
model equipped with stable isotope diagnostics to system-
atically study the different typical process scales – includ-
ing those from atmospheric temperature variations, circula-
tion variability, precipitation intermittency, and the isotope–
temperature relationship – to determine the optimal spatial
arrangement of ice-core locations which maximizes the cor-
relation with temperature at a specific target site. To address
this problem we focus on target sites on the East Antarc-
tic Plateau. Our results show that the average of multiple
ice-core isotope records yields a higher degree of correla-
tion with temperature when the sampled locations are spread
across distances of 1000 km or more from the target site than
when they are all located close (< 250 km) to the target site.
While these results may seem counterintuitive at first, we
qualitatively explain their general features with a simple an-
alytical model that uses the typical spatial correlation struc-
tures associated with the temperature and isotope fields, as
well as with the noise generated by precipitation intermit-
tency.
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2 Data and methods

2.1 Climate model data

We use data from the past-millennium simulation (800–
1999 CE; Sjolte et al., 2018) of the fully coupled
ECHAM5/MPI-OM-wiso atmosphere–ocean general cir-
culation model equipped with stable isotope diagnostics
(Werner et al., 2016). This simulation is forced by green-
house gases, volcanic aerosols, total solar irradiance, land use
changes, and changes in the Earth’s orbital parameters. The
model’s atmospheric component ECHAM5-wiso is run with
a T31 spectral resolution (3.75◦× 3.75◦) and with 19 ver-
tical levels (Sjolte et al., 2018). Compared to observations,
the climatological relationship between temperature and the
precipitation isotopic composition is reproduced well by the
model, but it is biased towards warm temperatures in the T31
setup and its isotopic composition is not depleted enough
over Antarctica (Werner et al., 2011). These issues can be
improved upon by using a higher spatial resolution (Werner
et al., 2011); however, such a higher-resolution model is
not needed for our study, since we are mainly interested in
the relative variability between sites and not in the absolute
temperature or isotope values. The full atmosphere–ocean
model was compared to observational data and palaeoclimate
records for two equilibrium simulations under pre-industrial
and Last Glacial Maximum conditions (Werner et al., 2016),
and the past-millennium simulation was used to reconstruct
North Atlantic atmospheric circulation in combination with
ice-core isotope data (Sjolte et al., 2018).

In this study, we use the 1200-year ECHAM5/MPI-OM-
wiso time series of 2 m surface air temperature (T2m), pre-
cipitation (p), and oxygen isotopic composition in precip-
itation (the relative abundance of oxygen-18 to oxygen-16
isotopes, denoted as δ18O) extracted from the total number
of 442 model grid cells that are available for the Antarctic
continent (Münch and Werner, 2020).

2.2 Data processing

The model simulation output has a monthly temporal res-
olution, while ice-core isotope records typically exhibit an
annual (or even lower) resolution. The latter is commonly
achieved by averaging the isotopic data across annual layers
of snow and ice, which are determined through a dating ap-
proach. The resulting annual isotopic composition data there-
fore include a weighting effect due to the intra-annual vari-
ability in the amount of precipitation. To account for this, we
produce two versions of annual data from the monthly model
output (Münch and Werner, 2020): (1) the 2 m temperature
and oxygen isotopic composition data averaged to an an-
nual resolution without any weighting (denoted as T2m and
δ18O in the following) and (2) the respective monthly data
averaged to an annual resolution including the weighting by

the monthly precipitation amount (denoted as precipitation-
weighted data T (pw)

2m and δ18O(pw)).
In extremely dry areas with very little precipitation or

high evaporation, numerical instabilities can occur for the
modelled isotopic composition in precipitation, resulting in
anomalously strong positive or negative spikes in the isotope
time series, which is also observed for the Antarctic data in
our model simulation. We set a threshold of 4 times the in-
terquartile range of a time series, above or below which data
points are regarded as outliers, and apply it to every grid cell
in order to filter outliers in the δ18O and δ18O(pw) time se-
ries. This approach removes 443 anomalous annual values
(< 0.1 %), out of which 435 anomalies occur for the model
year 970 CE.

2.3 Data analyses

2.3.1 General approach

The overarching aim of this study is to determine a set of
locations from which the averaged model data optimally re-
construct the T2m temperature time series at a target site, i.e. a
specified model grid cell of interest. The optimal reconstruc-
tion is assessed by maximizing the Pearson correlation coef-
ficient (r) with the target site temperature. To define a spatial
set, we combine a given number, N`, of model grid cells and
varyN` and the distances of these locations relative to the tar-
get site. To derive implications for actual ice-core studies, we
use the δ18O(pw) time series at the locations as a surrogate for
ice-core isotope records. We thus neglect stratigraphic noise
and any further depositional or post-depositional effects on
the isotopic record, and therefore our results represent an up-
per limit of the extent to which ice cores can reconstruct the
climatic temperature signal in the atmosphere. In order to
learn how the different underlying processes affect the results
and to isolate their contributions, we compare the results ob-
tained for δ18O(pw) with those obtained for T2m, T (pw)

2m , and
δ18O. In addition to using only a single target site, we anal-
yse several adjacent target sites in a given region to derive
results that are relevant on local to regional spatial scales. In
the next section, we present the two main methods that we
use to assess the optimal reconstructions.

2.3.2 Assessing optimal reconstructions

Selecting optimal sites

In a first approach, we select an optimal set of ice-core loca-
tions to reconstruct a target site’s T2m time series by sampling
without replacement N` grid cells that lie within a selection
circle of 2000 km radius around the target site and then cor-
relating the average δ18O(pw) time series from these N` grid
cells with the target site temperature. We perform this for
different N` and determine the optimal set of cores for each
value of N` from the maximum correlation value across all
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selection trials. For this, we either sample all possible com-
binations of grid cell locations within the selection circle, if
the number of possibilities does not exceed 107, which effec-
tively applies to allN` ≤ 3, or we randomly sample 107 times
from all the possible combinations.

Optimal sampling structure

In order to learn about the typical spatial scales associated
with the processes that contribute to the overall temperature–
isotope relationship, we aim to investigate how the recon-
struction quality depends on the radial distances between the
target site and the locations of the ice-core network only, ne-
glecting their angular positions. To do so, one could use the
above random selection trials and bin them according to the
distances of the selected locations relative to the target site.
However, for N` > 1 the number of possible grid cell combi-
nations quickly becomes much larger than the actual number
of grid cells. In combination with the limited computation
time, such an approach would likely result in uneven sample
sizes for the available distance combinations for larger N`,
especially for distances farther away from the target site due
to the radially increasing number of grid cells.

Here, we instead use a second more general approach that
ensures constant sampling of the entire available space of ra-
dial distance combinations and which also reduces local ef-
fects in the climate model data and provides more stable cor-
relation results. For a given target site, we define as sampling
regions nine concentric rings around the target site with in-
creasing radius in steps of 250 km (Fig. 1) and identify all
grid cells that lie within each of these rings. The sampling
of N` grid cells is then implemented in the following two-
step process: first, we determine all possible combinations of
selecting N` rings with replacement. For every ring combi-
nation, we then apply the following second step: we sample
one individual grid cell from each of the N` rings (see the
examples in Fig. 1b for an illustration), extract from this grid
cell set the time series for a studied model variable, average
them, and compute the degree of correlation of this average
record with the target site temperature. This second step is
iterated over the available number of grid cell sets, and we
report the mean correlation across all analysed grid cell sets.
For the iteration, we identify all possible grid cell sets until
N` = 2; for N` ≥ 3, we resort to Monte Carlo sampling of
the grid cell sets due to computational reasons, for which we
estimated 105 iterations to provide sufficient convergence of
the results.

This approach provides insight into the average spatial
structure of the correlation with the target site temperature
for samplingN` locations from the model field depending on
the radial distances of the locations, as given by the respec-
tive ring midpoint radii. We denote this quantity as the sam-
pling correlation structure. Note that in the one-dimensional
case (N` = 1), the sampling correlation structure is identical

to what is often called the spatial correlation structure, i.e.
the average correlation as a function of radial distance.

2.3.3 Study regions

To derive sampling correlation structures which are represen-
tative on a regional scale, we conduct the above analysis for
specific regions by successively using each model grid cell
in the region as a target site and then averaging the resulting
sampling correlation structures across these target sites.

We make use of this approach for two subregions of the
East Antarctic Plateau: the Dronning Maud Land (DML) re-
gion in the Atlantic sector of the plateau and the Vostok re-
gion in the Indian Ocean sector, both of which include ex-
isting deep ice-core drilling sites and large arrays of shal-
lower ice and firn cores. We define the DML region as the
area of ±17.5◦ longitude and ±5◦ latitude around the Euro-
pean Project for Ice Coring in Antarctica (EPICA) DML site
(EDML; 75◦ S, 0◦ E; Fig. 1a), consisting of 26 model grid
cells. This region encompasses the site of the deep EDML ice
core (EPICA community members, 2006; Alfred-Wegener-
Institut Helmholtz-Zentrum für Polar- und Meeresforschung,
2016) and > 50 firn and shallow ice cores (Altnau et al.,
2015). For the Vostok region, we choose an identical lati-
tudinal and longitudinal coverage with respect to the Vos-
tok station (78.47◦ S, 106.83◦ E; Fig. 1a), covering 30 model
grid cells and encompassing the sites of the deep Vostok
and Dome C ice cores, several shallower cores (Stenni et al.,
2017), and the new deep drilling project (“Little Dome C”)
where an ice core extending back more than 1 million years
is envisaged (Passalacqua et al., 2018).

3 Results

3.1 Spatial scale of the temperature anomalies and the
local temperature–isotope relationship

First, we assess the extent to which a single ice-core record,
i.e. the annual isotope time series of an individual grid
cell in the model simulation, is representative of the local-
and regional-scale variability of the near-surface atmospheric
temperature.

The temperature field over Antarctica in the climate model
exhibits large-scale coherent variations (Fig. 2a) with a
clear two-part structure, which is roughly divided by the
Transantarctic Mountains: for most parts of the East Antarc-
tic Plateau, the temperature field shows typical decorrelation
lengths between ∼ 1500 and 2500 km, while the decorre-
lation lengths are notably lower, with values ranging from
∼ 500 to 1500 km, for larger parts of the West Antarctic Ice
Sheet and for the Antarctic Peninsula. Still, for perfect ice
cores, i.e. assuming an ideal temperature proxy record that
is only governed by local temperature variations, a single ice
core would capture the temperature variability in both East
and West Antarctic regions across hundreds of kilometres.
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Figure 1. Conceptual sketch of the ring sampling approach. Around a given Antarctic target site (black crosses in a and b) we define
consecutive rings of 250 km radial width (red lines in a and b). From the array of available model grid cells (grey points in b), we choose
sets of grid cells which consist of N` cells and which are drawn from N` radial bins determined by a selected combination of rings. As
an example for N` = 2, possible grid cell sets are shown for the cases of (i) combining the innermost ring with itself (grid cells marked
black), (ii) combining the innermost ring with the second ring (grid cells marked blue), and (iii) combining the third and the fourth ring
(grid cells marked orange). Also shown in (a) are our main study regions (black polygons) around the EDML (upward-pointing triangle) and
Vostok (downward-pointing triangle) ice-core sites. The ring width of 250 km is chosen as a trade-off between high spatial resolution and the
requirement that a sufficient number of grid cells lie inside each ring. Note that for aesthetic reasons, only four rings are displayed instead of
the actually used nine rings and that the model grid is shown simplified as a regular grid in space.

However, as simulated by the isotope-enabled climate
model, actual single Antarctic ice-core isotope records only
explain a low portion of the variations in the local tem-
perature fields: correlating the annual precipitation-weighted
field of modelled δ18O(pw) with the annual T2m time series
at the same grid cell results in generally low correlations
(mean of 0.38), which across all analysed grid cells range
from ∼ 0.1 up to ∼ 0.57, with ∼ 60 % of the correlations
≤ 0.4 (Fig. 2b). The correlations are overall improved when
the T (pw)

2m time series is used instead of the T2m time series
(mean correlation of 0.53, range ∼ 0.1 to 0.77; Fig. 2c) but
with unaffected correlation values mostly in the coastal re-
gions (Fig. 2d). This shows that precipitation intermittency is
a major limiting factor for the local temperature–isotope cor-
relation on the continental plateau but is less important near
the coasts due to higher and more regular snowfall amounts
there (Casado et al., 2020).

3.2 Spatial correlation with local temperature

In the next step, we investigate how a local temperature
record correlates in space with the temperature itself and
with the oxygen isotope composition. For this, we choose
the EDML and Vostok drilling sites as target sites and cor-
relate the annual T2m time series at these target sites with
the spatial fields of annual temperature and of annual δ18O,
both unweighted and weighted by the precipitation amount
(Fig. 3).

We find that the correlation patterns with the temperature
field itself are largely radially symmetric with respect to the
target sites and decay uniformly with distance within the
first couple of hundred kilometres from the target (Fig. 3a,
e). However, for δ18O, and also partly through the effect of
the precipitation weighting, radial asymmetry in the corre-
lation patterns occurs. This is particularly striking for the
EDML target site. Here, the maximum in correlation with
the δ18O field is not centred on the target site but displaced
by ∼ 1200 km towards the southeast (Fig. 3c, d). Some spa-
tial displacement in maximum correlation is also visible for
the Vostok target site and the T (pw)

2m , δ18O, and δ18O(pw) fields
(Fig. 3f–h), but in different directions between T (pw)

2m and the
oxygen isotope fields and much smaller than in the case of
EDML. We also note that the correlation patterns for the
T

(pw)
2m , δ18O, and δ18O(pw) fields still contain radially sym-

metric contributions with respect to the target sites, which
are more pronounced for the Vostok than for the EDML tar-
get site.

3.3 Selecting optimal ice-core sites for temperature
reconstructions

The above analyses have shown firstly that isotope records
from single ice cores likely only capture a small portion of
the local interannual temperature variability, suggesting that
additional processes, such as precipitation intermittency, in-
fluence the isotopic signal and decrease the degree of correla-
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Figure 2. Temperature decorrelation lengths and local temperature–isotope relationship across Antarctica. (a) The temperature decorrelation
lengths (τ , in kilometres) for each Antarctic model grid cell estimated by fitting an exponential model to the correlation–distance relationship
(see Eq. A4) obtained from correlating the local annual near-surface T2m time series with the respective temperature time series from all other
grid cells. Note that only the continental grid cells were used for the fit. Although the decorrelation lengths show a strong partition between
East and West Antarctica, they are larger than 1000 km at most locations. (b, c) The local correlations at each model grid cell between the
annual time series of precipitation-weighted oxygen isotope composition and of (b) near-surface temperature and (c) precipitation-weighted
near-surface temperature. The difference between the maps (d) clearly demonstrates that precipitation intermittency is a major limiting factor
for the temperature–isotope relationship.

tion with the local temperature record. Interpreting these ad-
ditional processes as noise raises the question of whether the
correlation with temperature can be improved upon by aver-
aging isotope records across space. In addition, we have seen
that the correlation of an oxygen isotope composition record
with a local temperature record is not necessarily maximal at
the location of the temperature recording, posing the question
of how locations of isotope records should be spatially ar-
ranged with respect to the location of the temperature record
in order to get the best correlation. To address these ques-
tions, we assume an ideal world in which the climate model
data are a perfect surrogate for the true climate and proxy
variations at each site, and we set up the simple experiment
of selecting and averaging δ18O(pw) records from grid cells
within a 2000 km circle around a target site (see Sect. 2.3.2
for details) to determine what spatial array of N` ice cores
optimizes the temperature correlation with the target site.

For our specific model simulation and specifying the
EDML drilling site as the target site, we already know from

Fig. 3a that the optimal location for a single ice core is not
the local grid cell at the target site but should be a∼ 1200 km
southeastward site. Choosing this more distant site increases
the correlation with the target temperature from an r value
of 0.30 for the local EDML site to a value of 0.44 (Fig. 4a).
Even more intriguingly, when we analyse the maximum cor-
relations with the EDML target temperature for an average
of three or five cores chosen from the 2000 km selection cir-
cle (Fig. 4b–c), we find optimal locations that in both cases
are scattered at significant distances around the target and
which yield an even further increase in correlation (r = 0.50
for N` = 3, r = 0.52 for N` = 5). We obtain comparable re-
sults when the Vostok drilling site is specified as the target
(Fig. 4d–f). The optimal single core would be at a location
∼ 190 km west of Vostok (r = 0.49 compared to the local
correlation of r = 0.46), and the optimal locations for aver-
aging three or five cores again all lie scattered around the
target without including it and result in a significant fur-
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Figure 3. Spatial correlation with the temperature at the EDML and Vostok target sites. Shown are the correlations of the T2m time series at
the target sites EDML (a–d) and Vostok (e–h) with the spatial fields of temperature (a, d), precipitation-weighted temperature (b, f), oxygen
isotope composition (c, g), and precipitation-weighted oxygen isotope composition (d, h). The target sites are marked with a black cross;
black lines indicate correlation contour lines incremented in steps of 0.1.
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Figure 4. Selecting ice-core locations that optimally reconstruct interannual temperatures at the EDML and Vostok drilling sites. The maps
show the correlation coefficient in the climate model data between the annual temperature time series at the target sites (black crosses)
EDML (a–c) and Vostok (b–f) with the time series fields of precipitation-weighted oxygen isotope composition (δ18O(pw)). Filled black
points denote grid cells that yield the maximum correlation between the target site temperature and the δ18O(pw) time series from either
selecting a single grid cell (N` = 1; a, d) or from averaging across N` = 3 (b, e) or N` = 5 (c, f) grid cells, obtained from iteratively
selecting sets of N` grid cells from within a selection circle of 2000 km radius around the target site indicated by the black radial lines
(see Sect. 2.3.2 for details). Interestingly, non-local ice-core locations systematically show the strongest relationship with the target site
temperature.

ther increase in correlation (r = 0.60 for N` = 3, r = 0.63
for N` = 5).

We generalize these findings by considering each Antarc-
tic model grid cell as a target site and determining in each
case the ice-core location that results in an optimal correla-
tion with the target site. As in the above EDML case study,
about half of the optimal locations for a single ice core are
situated at distances between 500 and 1500 km from the re-
spective target sites, while only about 10 % lie within 500 km
from the targets. We note that this distribution might be af-
fected by the number of available sampling points (i.e. model
grid cells) per distance bin, which increase with increas-
ing distance from the target site. However, after weighting
the distance distribution with the average inverse number of
available grid cells per distance bin, still only about one-fifth
of the optimal distances lie within 500 km from the targets.

3.4 Optimal ice-core sampling structures

The approach for choosing optimal ice-core locations yields
straightforward and instructive results. However, it might be
doubtful as to whether these results can be directly applied to
the real world, since they might depend on the specific simu-
lated climate state, depend on the specific climate model and
model isotope scheme used, or result from statistical overfit-
ting. We therefore adapt our approach in a next step to learn
more about the general spatial arrangement of the optimal
ice-core locations which yield the maximum correlation with
temperature. This is done by applying our concept of sam-
pling correlation structures (see Sect. 2.3.2 and the illustra-
tion in Fig. 1), which studies the correlation patterns only as

a function of radial distance from the target site by averaging
across 250 km radial bins and across the angular positions,
thereby reducing local variability in the model data. Addi-
tionally, we apply the approach to all target sites in our DML
and Vostok study regions (Sect. 2.3.3) and average the re-
sults across these sites to obtain regional estimates. Finally,
we analyse each of the model variables to highlight the dif-
ferences between the individual fields.

When we sample only a single location (N` = 1), the sam-
pling correlation structure is conceptually equivalent to the
average correlation with distance, and it therefore simply
gives the spatial decorrelation in the case of sampling from
the T2m field itself. The average sampling correlation struc-
tures for T2m across the DML and Vostok regions (Fig. 5) can
be described by an exponential decay with a length scale of
∼ 1900 km in both cases, consistent with the estimated spa-
tial temperature decorrelation lengths for the individual grid
cells in these regions (Fig. 2a). In accordance with the gen-
eral expectation, the maximum average correlation with the
target site temperature is thus obtained from sampling the in-
nermost ring only.

When we compare these results to the average sampling
correlation structure for the δ18O field, we find for the DML
region a much lower average correlation with the target site
temperature as a function of distance (Fig. 5a). The aver-
age correlation for the innermost ring (< 250 km) is ∼ 0.4,
but it decreases only slightly within the first ∼ 800 km, fol-
lowed by a slightly steeper decrease and nearly constant lev-
els of r.0.2 for distances &1600 km. For the Vostok region
(Fig. 5b), the average sampling correlation structure for δ18O
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Figure 5. Average sampling correlation structures with temperature for the DML and Vostok regions in the case of sampling single locations.
Shown as a function of distance is the average correlation between the interannual near-surface temperature (T2m) at a target site and the
spatial fields of T2m (black), oxygen isotope composition (δ18O, green), and precipitation-weighted oxygen isotope composition (δ18O(pw),
blue). Averaging was performed in two steps: first, for a given target site, the correlations with the target site temperature were averaged
across grid cells lying within 250 km wide consecutive rings around the given target site. Secondly, this analysis was conducted for all target
sites in the DML (a) and Vostok (b) region, and the results were averaged across the respective region (see Sect. 2.3.2 and 2.3.3 for details).
Shading denotes ±1 standard deviations of the correlation results across the different target sites in each region. The black dashed lines
indicate an exponential fit to the T2m data.

exhibits a nearly linear decrease from an initial value of
r ∼ 0.6 to r ∼ 0.1 in the final ring (> 2000 km). When we
analyse the δ18O(pw) fields we find that precipitation weight-
ing reduces the correlation values in both regions but that it
does not have a large effect on the shape of the sampling cor-
relation structures itself.

Extending this analysis to the two-dimensional case of
sampling and averaging N` = 2 locations offers the possi-
bility of investigating the average correlation not only as a
function of distance from the target site but also implicitly
as a function of distance between the two sampled locations
(Fig. 6). The difference in the average sampling correlation
structure between the fields of T2m and δ18O(pw) is even more
pronounced for N` = 2 than for N` = 1. The maximum av-
erage correlation for T2m is still found when both sampling
locations lie inside the innermost ring, as shown for the DML
region (Fig. 6a). However, for δ18O(pw) the optimal arrange-
ment of two locations is to sample one location from within
the innermost ring but the second location from within the
fifth ring, i.e. between ∼ 1000 and 1250 km from the target
site (Fig. 6c). Part of this structure is related to the effect of
precipitation intermittency, which can be seen from the aver-
age sampling correlation structure of the T (pw)

2m field (Fig. 6b).
Here, in contrast to T2m, the correlation is about as high when
we combine the innermost ring and one ring further away as
when we sample both locations from within the innermost
ring.

Analysing the Vostok study region leads to comparable re-
sults (Fig. 6d–f), with a similar difference in average sam-
pling correlation structure between T2m and T (pw)

2m as for the

DML region and a similar structure of T (pw)
2m and δ18O(pw) for

distances .1000 km. However, the results for the δ18O(pw)

field (Fig. 6f) do not display such a pronounced maximum
correlation when one location is sampled from within the in-
nermost ring and the second one from inside a ring further
away as is observed for the DML region. This suggests that
the regional differences in the spatial correlation structure of
the δ18O field (Fig. 5) have an influence here.

The general feature of the optimal δ18O(pw) sampling ar-
rangement is robust throughout Antarctica, despite the above
regional differences. When we analyse all available Antarctic
target sites and fix the first core location to lie inside the in-
nermost ring, in ∼ 82% of all cases the optimal second core
location is at least the second ring (> 250 km), and in∼ 63 %
of the cases it is the second to fourth ring (250–1000 km).

We also obtain similar results when averaging N` = 3 or 5
locations of the δ18O(pw) field to reconstruct the target site
temperature (Fig. 7). For computational reasons, we only
analyse single target sites here. When EDML is set as the
target site, the optimal sampling configuration is such that
one to two core locations lie in the innermost ring, while the
others are distributed at distances mostly between∼ 750 and
1500 km from the target. For reconstructing the Vostok tar-
get site temperature, the optimal core locations combine the
innermost ring with locations distributed mostly across the
second to third (250–750 km) ring.

In summary, averaging the δ18O(pw) time series across the
optimal locations clearly increases the average correlation
with the target site temperature more strongly with the num-
ber of locations compared to sampling all core locations only
locally close to the target site, i.e. from the grid cells that lie
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Figure 6. Average sampling correlation structure with temperature for the DML and Vostok regions in the two-dimensional case of sampling
two locations. Shown is the mean correlation of all possible single correlations between the target site temperature and the average of two
grid cells of (a, d) T2m, (b, e) T (pw)

2m , and (c, f) δ18O(pw) time series sampled from the same ring or from two different rings. This analysis
was conducted for every target site in the DML region (a–c) and in the Vostok region (d–f), and the results were then averaged across the
respective region. For each plot, the axes display the distance from the target site; the x (y) axis represents the first (second) sampled ring,
with the results being mirrored along the diagonal for aesthetic reasons. The tick marks indicate the border distances of the rings. Note
the marked difference in the locations of the correlation maxima between T2m and δ18O(pw) for the DML region, and also for the Vostok
region the – albeit marginal – correlation maximum for δ18O(pw) is achieved by combining the innermost ring with the ring between 500
and 750 km.

Figure 7. The optimal arrangement for averaging three or five δ18O(pw) ice cores to reconstruct the target site temperature at the EDML (a, c)
and Vostok (b, d) drilling sites. Displayed are subsets of the sampling correlation structures forN` = 3 and 5, showing along the vertical axis
the optimal five of all possible combinations of rings (best denoted as rank 1, fifth best as rank 5), i.e. those which exhibit the five highest
mean correlation values across 105 random trials of averaging N` = 3 (a, b) or N` = 5 (c, d) grid cells from these rings. The ring bin borders
are marked by thin vertical lines with their distances from the target site given on the horizontal axes; the selected optimal ring combinations
are marked as black dots. Systematically, arrangements which combine ice cores from the innermost ring with ice cores further away are
found to be optimal, with larger distances for the EDML target site.
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Figure 8. Gain in correlation and risk of adverse sampling. (a) The average correlation with the target temperature at the EDML (red) and
Vostok (blue) sites depending on the number of locations, N`, used for averaging the δ18O(pw) time series. Sampling is performed either
locally from the innermost ring only (dashed lines) or from all possible individual combinations of locations for the respective optimal ring
combination determined for each N` (solid lines). Compared to the local samples, which show virtually no or only a small increase with the
number of sampled locations, the correlation increases markedly withN` when sampling from the optimal rings, as highlighted by the shaded
area. (b) Histogram of individual correlations for sampling from the optimal ring combination when averaging N` = 3 locations compared
to the correlation (vertical lines) for sampling from the innermost ring only, displayed for the EDML (red) and Vostok (blue) target sites. In
both cases, the correlation is higher than the local value for more than 93 % of the optimal ring combination samples.

within the innermost ring (Fig. 8a). While the local corre-
lation for the EDML target site stays constant around 0.31,
the optimal correlation rises to 0.35 for N` = 2 and to 0.43
for N` = 10, which is equivalent to nearly a doubling in the
explained variance. For the Vostok target site, we observe a
nearly concurrent increase in correlation between the local
and optimal sampling up until N` = 2 from 0.45 to ∼ 0.50,
but for larger N` the optimal correlation also increases more
strongly and reaches 0.58 for N` = 10, which is a ∼ 1.7-fold
higher explained variance compared to N` = 1.

These results are the mean value from averaging across
many possible combinations of individual locations. In real-
ity, any new drilling campaign or reanalysis of existing ice
cores only represents one single combination of locations.
Therefore, we further assess the risk of an “adverse optimal
sampling”, i.e. the probability of choosing by chance a spe-
cific sampling realization from the optimal ring combination
which yields a lower correlation than the correlation for sam-
pling locally. For this purpose, we compare the distribution of
individual correlations from sampling the optimal ring com-
bination with the value obtained from sampling only the lo-
cal sites which lie in the innermost ring. Overall we find the
risk of adverse optimal sampling to be low, since more than
93 % of all individual correlation values in the example of
N` = 3 are actually larger than the respective local correla-
tion (Fig. 8b).

4 Discussion

4.1 Dependence on radial distance

Oxygen isotope records derived from ice cores are com-
monly interpreted to reflect local temperature changes at the
ice-core drilling site. Here we have shown that while there
is local isotope–temperature correlation (Fig. 2b), this cor-
relation can be increased considerably by averaging isotope
records across space (Fig. 8a) following a distinct radial pat-
tern which combines the local target site with locations be-
tween a few hundred kilometres and ∼ 1000 km from the
target site (Figs. 6c, f, and 7). These results are based on
a method which investigates the spatial correlation structure
only as a function of radial distance by averaging across the
azimuthal component. The motivation for this approach is
that from physical arguments we expect the first-order spatial
correlation patterns to be invariant against rotation. Such ra-
dial symmetry is indeed observed as the leading component
of the spatial correlation structure of the temperature field
and as a second-order component of the oxygen isotope field
(Fig. 3). We interpret these symmetric contributions as a gen-
eral feature of the underlying atmospheric processes com-
pared to individual, local correlation maxima which are more
due to the actual dynamics. Therefore, we expect that our re-
sults obtained from the radial sampling correlation structures
should be largely independent of the climate state, or the cli-
mate model used, and thus serve as valid recommendations
for real-world applications. In the next section, we substan-
tiate this interpretation by showing that a simple conceptual
model can predict the sampling correlation structure from the
basic processes which shape the isotopic composition time

https://doi.org/10.5194/cp-17-1587-2021 Clim. Past, 17, 1587–1605, 2021



1598 T. Münch et al: Optimal ice-core arrangement

series modelled only as a function of radial distance. Finally,
we will discuss the relevance of our results to actual ice-core
studies.

4.2 Conceptual model of the optimal sampling structure

For a conceptual model of the sampling correlation structure,
we focus on the three main atmospheric processes that influ-
ence the oxygen isotope records in ice cores: (i) tempera-
ture variations, (ii) precipitation intermittency, and (iii) the
temperature–isotope relationship. We statistically model the
associated fields of T2m, T (pw)

2m , and δ18O(pw) separately in
order to understand the influence of each process (see Ap-
pendix A for details), and we assess, for comparable results,
the predicted average sampling correlation structure with the
target site temperature in the two-dimensional case of aver-
aging two locations in the same manner that we analysed the
climate model data.

To model the atmospheric temperature field, we assume
an isotropic exponential decay of the spatial correlation with
a constant decorrelation length (Appendix A2). Such an ex-
ponential temperature decorrelation is a commonly observed
feature (Jones et al., 1997) and also confirmed by our climate
model data (Figs. 2a, 3a, e, and 5). Given this relationship,
we find good agreement for the two-dimensional sampling
correlation structure between the conceptual model and the
climate model data regarding both absolute correlation val-
ues and the spatial pattern (Fig. A2a). We emphasize that the
maximum correlation with the target site temperature natu-
rally occurs in the case of an isotropic correlation decay when
the averaged two (orN`) locations are close to the target site,
as any location which is further away will contribute a tem-
perature signal that is less similar to the other locations.

To elucidate the role of precipitation intermittency, we fol-
low the simplest assumption, which is that this process can be
described by partly aliasing the original temperature signal
into temporal white noise (Laepple et al., 2018; Casado et al.,
2020). We further assume that this noise is not independent
between sites but that it follows the spatial scale of precipita-
tion events, which we describe as an exponential decorrela-
tion in space with a second length scale (Appendix A3). This
intermittency length scale is related to the atmospheric pro-
cesses that deliver precipitation, e.g. synoptic systems, and is
hence assumed to be smaller than the length scale of the tem-
perature anomalies. The introduction of this second length
scale into our conceptual model generally explains the opti-
mal sampling structure we obtained from the climate model
data. Qualitatively, close locations exhibit a strong correla-
tion in temperature but also in the noise from precipitation
intermittency; therefore, this noise cannot be reduced by av-
eraging the locations, yielding an overall low signal-to-noise
ratio. However, with increasing distance between the loca-
tions, the intermittency noise decorrelates faster than the tem-
perature field due to the different decorrelation scales, result-
ing in an optimal distance of maximum signal-to-noise ratio.

This is also reflected in our conceptual model (Figs. A1 and
A2b, e): when fixing the position of one core to the inner-
most location and varying only the distance from the target
site of the second core location, the correlation with the tar-
get site temperature first increases with increasing distance
of the second location and then maximizes at an optimal dis-
tance before it decays with a further increase in distance. In
the climate model data, we observed a similar feature for the
precipitation-weighted temperature (Fig. 6), though it was
not as clear as in the conceptual model. This mismatch could
be related to the assumed isotropy in the conceptual model
and the according azimuthal averaging done in the climate
model data analysis, which potentially smears the intermit-
tency effect in the climate model data due to slight differ-
ences in the decorrelation lengths between the different hor-
izontal directions.

In order to incorporate the δ18O(pw) field into the concep-
tual model, we need to account for the spatial temperature–
isotope relationship. To accomplish this, we parameterize the
spatial dependence of the correlation between temperature
and the oxygen isotope composition with a simple isotropic
linear model based on the climate model data results (Fig. 5
and Appendix A4). In addition, we assume that the same ef-
fect of precipitation intermittency that we adopted for the
temperature field is also applicable to the oxygen isotope
field. With these simple assumptions, we obtain good quali-
tative agreement for the DML region between the conceptual
model and the climate model data results (see Figs. A2c and
6c). In addition, when we change the parameterized isotope–
temperature relationship such that it more closely resembles
the Vostok region data (Fig. 5b), the sampling correlation
structure in the conceptual model (Fig. A2f) is more similar
to the observed correlation structure (Fig. 6f). However, in
general the conceptual model fails for δ18O(pw) to reproduce
the actual range in correlations as it produces much lower
values than expected.

In summary, our conceptual model provides a quantitative
understanding of the spatial correlation of the temperature
in the climate model data and at least a qualitative under-
standing of the processes that affect the correlation between
temperature and the δ18O(pw) field, i.e. precipitation intermit-
tency and the spatial temperature–isotope relationship. The
deficiencies in the conceptual model may be attributed to
its simplicity. For the governing processes, we assumed spa-
tially constant and isotropic length scales, neglecting local
and direction-related differences in e.g. temperature decorre-
lation lengths (see Fig. 2a) or the spatial extent of the coher-
ence of precipitation intermittency. Instead of being constant,
the latter may differ depending on the type of precipitation,
e.g. synoptic versus stratiform precipitation, and may exhibit
directional dependencies related to topography. Furthermore,
we assumed constant variance of all time series, thereby ig-
noring potential weighting effects on the correlations for the
spatial average of several locations due to different variabili-
ties between them.
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4.3 Relevance for ice-core studies

Our results from analysing the climate model data provide
guidance on where to drill or from where to analyse N` = 1,
2, 3, or more ice cores in order to optimally reconstruct the
atmospheric temperature signal for a certain target site. For
this, our analysis highlights two distinct approaches.

The first possibility is to follow the recommendations ob-
tained from directly choosing the specific locations which
maximize the correlation with the target site temperature
(Fig. 4). This is straightforward; however, for applications
such locations would need to be derived for every target
site in question. In addition, as outlined above, it is unclear
whether the results can be one-to-one transferred to the real
world, since they might be due to unaccounted model defi-
ciencies or depend on dynamical processes in the atmosphere
which could differ between climate states or depend on initial
conditions. One indication for this is that we obtain different
optimal single core locations for more than half of all inves-
tigated Antarctic target sites when we analyse only the first
or only the second half of the respective climate model time
series compared to the full 1200 years.

We have argued above that the sampling correlation struc-
tures, obtained from averaging the individual correlations
across space for combinations of concentric rings around the
target site, are a more general quantity, and we have shown
with our conceptual model that they are on average governed
by the interplay of the different underlying correlation length
scales. We expect the latter to vary less between different
climate periods or states or between regions. This is substan-
tiated by the fact that the sampling correlation structures for
two cores (Fig. 6) are much more robust against analysing
only the first or the second half of the model time series,
which is different to the results from directly choosing opti-
mal locations. Thus, the sampling correlation structure offers
a general approach for finding an optimal ice-core network,
but with the downside that it informs us only about the rela-
tive radial distances of the optimal network around the target
site.

Using the sampling correlation structures we arrive at the
following recommendations for optimal ice-core sampling
configurations. If it is only possible to drill or analyse a single
ice core, our results show that it is always best to sample lo-
cally, i.e. to place this core near the target site of interest. This
is also common practice, given the usual interpretation of ice-
core isotope records as a proxy for local temperatures. How-
ever, due to the effect of precipitation intermittency modu-
lated by the spatial coherence of the temperature–isotope re-
lationship, it is no longer optimal in the case of drilling two
ice cores to collect both cores near the target site, but instead
to drill one core at the target site and one at least 500 km
away. Where three or more ice cores will be drilled or anal-
ysed, we expect the optimal spatial configuration to be more
dependent on the study region, but our results indicate that

it is still likely best to place one core near the target site and
distribute the others across several hundred kilometres.

These inferences are based on data from a single climate
model simulation together with a simple statistical concep-
tual model, which should be tested against observations.
As a proof of concept, we thus need to create an isotope
record that is in first order only governed by temperature
variations and precipitation intermittency and remove the im-
pact of small-scale stratigraphic noise from the actual mea-
sured records (assuming that any further processes in the pre-
depositional to depositional phase contribute negligibly to
the local isotopic variations). To accomplish this, one pos-
sible strategy would be to use trench sampling campaigns
(see Münch et al., 2016, 2017, for the EDML site). Then,
one test of our optimal sampling configurations could be to
combine one trench record, e.g. one from EDML, with an-
other trench sampled at the optimal distance based on our re-
sults forN` = 2 and correlate the average of these two trench
records with the instrumental temperature data set available
for EDML. Based on the results in this study we would ex-
pect a higher degree of correlation in this case compared to
using only one local trench record from EDML. We acknowl-
edge that such an approach would be challenging due to the
small amount of available instrumental data (∼ 20 years for
EDML) and the inevitable dating uncertainties between the
two trench records.

Finally, we note that our implications concerning optimal
ice-core sampling configurations might in reality be affected
by two further processes we have neglected here. Firstly,
clear-sky precipitation (“diamond dust”) is a common phe-
nomenon in Antarctica, especially in the drier regions of the
Antarctic Plateau, which potentially occurs more regularly
than convective-type or stratiform precipitation. Diamond
dust formation is not explicitly simulated by the ECHAM5
model, so it is possible that the precipitation intermittency
modelled in our simulation is partly offset in reality by a
stronger relative contribution of diamond dust to the total
precipitation amount. Secondly, surface–atmosphere vapour
exchange between precipitation events might constitute a
second process which imprints an atmospheric temperature
signal into the surface snow, next to precipitation (e.g. Steen-
Larsen et al., 2014; Madsen et al., 2019). This process could
hence also partly counteract the impact of precipitation in-
termittency, depending on its relative importance for the iso-
topic composition of the surface snow. However, there is no
clear consensus in the recent literature on this question, and
ultimately we need quantitative estimates of the importance
of vapour exchange processes across temporal scales. In any
case, these considerations do not affect our general notion
that the optimal ice-core sampling configuration depends on
the differences in spatial decorrelation scales of the processes
which shape the isotopic records.
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5 Conclusions

In this study we assessed the spatial sampling configuration
of ice cores to optimally reconstruct the annual near-surface
temperature at a specific target site. This problem was moti-
vated by the expectation that the major processes influencing
the isotopic records of ice cores operate on different spatial
scales.

Indeed, by analysing the temperature and isotope data of
an isotope-enabled atmosphere–ocean climate model simu-
lating the climatic history over the last millennium in Antarc-
tica, we showed that while in the optimal setup a single ice
core should be placed close to the target site of interest, a
second core should be located far (> 500 km) from the first
core. While this may seem surprising at first glance, it can
be straightforwardly explained by the interplay of two dif-
ferent correlation lengths in space: one for the temperature
anomalies and one parameterizing the spatial coherence of
the effect of precipitation intermittency, as demonstrated by
a simple conceptual model. Despite the fact that these re-
sults were specifically obtained for two regions of the East
Antarctic Plateau, we expect similar results to hold for other
parts of Antarctica and potentially also for other large-scale
ice-coring regions such as Greenland, as long as our sim-
plified assumptions of nearly isotropic exponential decorre-
lation length scales are also valid there. However, we also
suggest verifying our results with a different isotope-enabled
climate model in order to rule out any dependence on the
specific atmospheric model and isotope scheme applied in
the simulation used here.

Overall, our study explicitly improves the planning of
drilling or analysis campaigns for spatial networks of ice-
core isotope records. In addition, it provides a strategy to
analyse an optimal configuration of sampling locations for
any proxy which is influenced by two or more processes that
exhibit different spatial correlation scales. This likely applies
to various marine and terrestrial proxy types, and our strat-
egy might thus offer a step forward in the best use of sam-
pling and measurement capacity for quantitative climate re-
constructions, which needs to be investigated in further stud-
ies.
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Appendix A: Conceptual model of sampling
correlation structures

A1 General model

We set up a conceptual model for the correlation between
a target temperature time series and a spatial average based
on a set of locations sampled from a climatic field (sampling
correlation structure). Our model assumes simple isotropic
and exponential decorrelation structures for the involved cli-
matic fields and is based on previous work which suggests
that precipitation intermittency can be described by partly
aliasing the original temperature signal into white noise
(Laepple et al., 2018).

In the model, we consider a temperature time series T0 at
some target site r0 and a scalar field x of a given climate
variable. From this field, we select N` time series xi at the
locations r i , i = 1, . . .,N` and denote the spatial average of
these time series by x = 1

N`

∑N`
i=1xi . The distances of the N`

locations from the target site and the distances between the
locations are given by ri = |r i − r0| and by dij = |r i − rj |,
respectively. The correlation between T0 and x follows from

cor(T0,x)=
cov(T0,x)

√
var (T0)var (x)

, (A1)

and it is governed by the covariance between the tempera-
ture at the target site and the climate field at the sampling
locations r i ,

cov(T0,x)=
1
N`

N∑̀
i

cov(T0,xi) , (A2)

as well as by the covariance between the sampling locations
through the variance of their spatial average,

var (x)=
1
N2
`

(
N∑̀
i

var(xi)+ 2
N`−1∑
i

N∑̀
j

cov
(
xi,xj

))
. (A3)

In our model, these quantities depend on the distance be-
tween sites and on the correlation structure of the respec-
tive field x, as we show in the following and as illustrated in
Fig. A1.

A2 Temperature

For the near-surface temperature field, x ≡ T , we assume a
spatially constant variance, var(T0)= var(Ti)≡ σ 2

T , and an
isotropic decorrelation following an exponential decay with
a decorrelation length τ ; i.e. the covariance between sites is
(see black line in Fig. A1)

cov(T0,Ti)= σ 2
T exp

(
−
ri

τ

)
, (A4)

cov
(
Ti,Tj

)
= σ 2

T exp
(
−
dij

τ

)
. (A5)

The correlation between the target site temperature and the
spatial average ofN` temperature time series is then obtained

Figure A1. Illustration of the decorrelation lengths in the concep-
tual model. Shown as a function of distance are the correlation be-
tween two temperature time series (black), between the intermit-
tency noise (purple), between a temperature and a precipitation-
weighted temperature time series (dashed black), between two
precipitation-weighted temperature time series (green), and be-
tween a target temperature time series and the average of two
precipitation-weighted temperature time series (orange) when one
is located at the target site and the other one is located away from
the target site at a distance as indicated on the x axis. Model pa-
rameters are taken from the DML region. The decorrelation curve
of the precipitation-weighted temperature time series is simply the
superposition of the temperature decorrelation and the decorrelation
of the intermittency noise, depending on the intermittency factor ξ .

from

cor
(
T0,T

)
=

∑N`
i=1 exp

(
−
ri
τ

)√
N`+ 2

∑N`−1
i=1

∑N`
j=i+1 exp

(
−
dij
τ

) . (A6)

A3 Precipitation-weighted temperature

To model the effect of precipitation intermittency, we fol-
low Laepple et al. (2018) and assume that precipitation in-
termittency redistributes the energy of the temperature time
series constantly across frequencies, i.e. creating temporal
white noise without changing the total variance. Then, the
precipitation-weighted temperature time series at location r i
arises from Ti as

T
(pw)
i = (1− ξ )1/2Ti + ξ

1/2σT εi(0,1), (A7)
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where εi(0,1) represents independent and normally dis-
tributed random variables with a mean of zero and a standard
deviation of 1. The parameter 0≤ ξ ≤ 1 determines the frac-
tion of the input temperature time series which is aliased into
white noise.

The covariance between the target site temperature and a
precipitation-weighted temperature time series is then

cov
(
T0,T

(pw)
i

)
= (1− ξ )1/2σ 2

T exp
(
−
ri

τ

)
, (A8)

which implies that the spatial correlation structure between
T0 and the precipitation-weighted temperature follows the
same exponential decay as in Eq. (A4), only scaled by the
factor (1−ξ )1/2 (see dashed black line in Fig. A1). The factor
ξ can be estimated from the climate model data by analysing
the local correlation, i.e. at the same grid cell, between the
temperature and the precipitation-weighted temperature.

We further assume that the effect of precipitation intermit-
tency is not independent between sites but is related to the
spatial coherence of the precipitation fields, for which we
assume an exponential decorrelation structure with a decay
length τpw. Based on these assumptions, the spatial covari-
ance between sites of the white noise terms induced by the
effect of precipitation intermittency has the form (see purple
line in Fig. A1)

cov
(
εi,εj

)
= exp

(
−
dij

τpw

)
. (A9)

Then, the correlation between the target site temperature and
the spatial average of N` precipitation-weighted temperature
time series is governed by the intermittency factor ξ and by
the two spatial length scales τ and τpw,

cor
(
T0,T

(pw)
)
=

√
1− ξ

∑N`
i=1 exp

(
−
ri
τ

)√
N`+ 2

∑N`−1
i=1

∑N`
j=i+1g

(
dij ;τ,τpw,ξ

) , (A10)

with

g
(
dij ;τ,τpw,ξ

)
:= (1− ξ )exp

(
−
dij

τ

)
+ ξ exp

(
−
dij

τpw

)
. (A11)

An example of the correlation according to Eq. (A10) for
N` = 2 and r1 = 0 is shown as a function of r2 in Fig. A1.

A4 Precipitation-weighted oxygen isotope composition

For the precipitation-weighted oxygen isotope composition
field, x ≡ δ(pw), we assume the same effect of precipitation
intermittency as for the temperature field. Furthermore, an
analysis of the climate model data suggests that the oxy-
gen isotope field largely exhibits an exponential decorrela-
tion structure in space (not shown). Hence, the correlation

between the target site temperature and the spatial average
of N` δ(pw) time series is obtained in a similar manner as for
T (pw), i.e.

cor
(
T0,δ

(pw)
)
=

√
1− ξ

∑N`
i=1cor (T0,δi)√

N`+ 2
∑N`−1
i=1

∑N`
j=i+1g

(
dij ;τδ,τpw,ξ

) , (A12)

where τδ is the decorrelation length of the δ field and the only
difference to Eq. (A10) is the unknown spatial correlation
structure between the temperature at the target site and the
oxygen isotope field, cor(T0,δi). Based on our climate model
results (Fig. 5), we parameterize this function with a simple
linear decay of the form

cor(T0,δi)=

{
c0− γ d, d ≤ d0,

0, d > d0,
(A13)

where γ = c0/d0, and d0 is some threshold distance above
which the correlation is zero.

A5 Model parameter estimation and model results

Overall, our model is governed by three decorrelation lengths
(τ , τδ , τpw), the intermittency factor ξ , and two parameters
describing the temperature–isotope correlation (c0, d0).

We estimate τ from the climate model data for the DML
and Vostok regions (Fig. 5) and find for both regions val-
ues of τ = 1900 km. In the same way we estimate a value
of τδ = 1100 km for both regions. The intermittency factor
ξ is derived from the local correlation between temperature
and precipitation-weighted temperature (Eq. A8). We find an
average value for the DML region of ξDML = 0.73, which is
close to the average value across all of Antarctica (ξAnt. =

0.71), while the intermittency is stronger for the Vostok
region (ξVostok = 0.82). We parameterize the temperature–
isotope correlation in the DML region with c0 = 0.4 and
d0 = 6000 km and in the Vostok region with c0 = 0.6 and
d0 = 2500 km (Fig. 5). The only unconstrained parameter
is the decorrelation length of the effect of precipitation in-
termittency, τpw, since it is unclear by which precipitation
variable it is mainly governed (total annual amount, seasonal
amount, or its distribution). An investigation with reanaly-
sis data yielded scales between ∼ 300 and 500 km for differ-
ent precipitation variables (Münch and Laepple, 2018), while
our model data exhibit an average decorrelation length of
∼ 600 km for the annual precipitation amount. Here, for the
conceptual model we choose a value of 500 km.

We can test our assumption for the effect of intermittency
based on using the estimated values of τ and ξ to predict the
spatial decorrelation between temperature and precipitation-
weighted temperature (Eq. A8). Indeed, this yields a compa-
rably good fit to the data as an independent fit (root mean
square deviation of ∼ 0.03 between data and fit in both
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Figure A2. Two-dimensional sampling correlation structures with temperature as predicted from our conceptual model using the model
parameters from the DML (a–c) and Vostok (d–f) regions. Shown is the mean correlation of all possible single correlations for the average
of two time series sampled from a pair of concentric rings around the target site for the fields of (a, d) T2m, (b, e) T (pw)

2m , and (c, f) δ18O(pw).
Note that panels (a) and (d) are based on the same parameters and therefore identical.

cases), supporting our assumption that intermittency can be
parameterized by a partial conversion of the time series into
white noise.

Similarly to analysing the climate model data, we now
use our conceptual model to predict the two-dimensional
(N` = 2) sampling correlation structures for the different
model fields of T2m, T (pw)

2m , and δ18O(pw) (Eqs. A6, A10, and
A12). Since our model space is continuous, we sample from
locations placed on concentric rings around the target site.
We either sample the two locations from the same ring or
from two different rings using ring radii from 0 to 2000 km
in increments of 10 km and calculate the average correlation
for a specific ring combination. To obtain meaningful expec-
tation values, we choose 36 locations distributed uniformly
across each ring in steps of 10◦, combine these locations one
by one for each ring combination, and average across the cor-
relations for each location pair. With the model parameters
from the DML and Vostok regions we obtain the results dis-
played in Fig. A2, which are discussed and compared to the
estimated results from the climate model data in the main
text.
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https://doi.org/10.5281/zenodo.5075439 (Münch, 2021).

Author contributions. TM and TL designed the research and de-
veloped the methodology. MW contributed by providing the climate
model data and with his expertise on the modelling of precipitation
isotopic composition. TM processed the model data, coded the anal-
ysis software, performed the analyses, and wrote the first version of
the paper. All authors contributed to the interpretation of the results
and to the preparation and revision of the final paper.

Competing interests. The authors declare that they have no con-
flict of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank Jesper Sjolte (Lund University)
for performing the ECHAM5/MPI-OM-wiso past1000 model simu-
lation as well as Mathieu Casado, Raphaël Hébert, and Torben Kunz
(AWI) for their helpful comments on this project and the paper. All
plots and numerical analyses in this paper were carried out using the
open-source software R: A Language and Environment for Statisti-
cal Computing. We are grateful to the two reviewers, Lenneke Jong
and Dmitry Divine, and to István Hatvani and Zoltán Kern, whose
comments helped to significantly improve the first version of this
paper. Finally, we thank Nerilie Abram for editing the paper.

Financial support. This research has been supported by funding
from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant
agreement no. 716092) and by Helmholtz funding through the
Polar Regions and Coasts in the Changing Earth System (PACES)
programme of the Alfred Wegener Institute.

The article processing charges for this open-access
publication were covered by the Alfred Wegener Institute,
Helmholtz Centre for Polar and Marine Research (AWI).

Review statement. This paper was edited by Nerilie Abram and
reviewed by Dmitry Divine and Lenneke Jong.

References

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung: Neumayer III and Kohnen Station in Antarc-
tica operated by the Alfred Wegener Institute, Journal of large-
scale research facilities, 2, A85, https://doi.org/10.17815/jlsrf-2-
152, 2016.

Altnau, S., Schlosser, E., Isaksson, E., and Divine, D.: Cli-
matic signals from 76 shallow firn cores in Dronning
Maud Land, East Antarctica, The Cryosphere, 9, 925–944,
https://doi.org/10.5194/tc-9-925-2015, 2015.

Birks, S. J. and Edwards, T. W. D.: Atmospheric circulation
controls on precipitation isotope–climate relations in western
Canada, Tellus B, 61, 566–576, https://doi.org/10.1111/j.1600-
0889.2009.00423.x, 2009.

Casado, M., Münch, T., and Laepple, T.: Climatic information
archived in ice cores: impact of intermittency and diffusion on
the recorded isotopic signal in Antarctica, Clim. Past, 16, 1581–
1598, https://doi.org/10.5194/cp-16-1581-2020, 2020.

Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations
in the ocean and the marine atmosphere, in: Stable Isotopes in
Oceanographic Studies and Paleotemperatures, edited by: Ton-
giorgi, E., Proceedings Spoleto 1965, V. Lishi e F., Pisa, Italy,
9–130, 1965.

Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–
468, https://doi.org/10.3402/tellusa.v16i4.8993, 1964.

EPICA community members: One-to-one coupling of glacial cli-
mate variability in Greenland and Antarctica, Nature, 444, 195–
198, https://doi.org/10.1038/nature05301, 2006.

Fisher, D. A., Reeh, N., and Clausen, H. B.: Stratigraphic Noise in
Time Series Derived from Ice Cores, Ann. Glaciol., 7, 76–83,
https://doi.org/10.1017/S0260305500005942, 1985.

Goursaud, S., Masson-Delmotte, V., Favier, V., Orsi, A., and
Werner, M.: Water stable isotope spatio-temporal variabil-
ity in Antarctica in 1960–2013: observations and simula-
tions from the ECHAM5-wiso atmospheric general circulation
model, Clim. Past, 14, 923–946, https://doi.org/10.5194/cp-14-
923-2018, 2018.

Hatvani, I. G. and Kern, Z.: Weighting alternatives for
water stable isotopes: Statistical comparison between
station- and firn/ice-records, Pol. Polar Res., 38, 105–124,
https://doi.org/10.1515/popore-2017-0006, 2017.

Jones, P. D., Osborn, T. J., and Briffa, K. R.: Estimat-
ing Sampling Errors in Large-Scale Temperature Aver-
ages, J. Clim., 10, 2548–2568, https://doi.org/10.1175/1520-
0442(1997)010<2548:ESEILS>2.0.CO;2, 1997.

Joussaume, S., Sadourny, R., and Jouzel, J.: A general circulation
model of water isotope cycles in the atmosphere, Nature, 311,
24–29, https://doi.org/10.1038/311024a0, 1984.

Jouzel, J. and Merlivat, L.: Deuterium and Oxygen 18 in
Precipitation: Modeling of the Isotopic Effects During
Snow Formation, J. Geophys. Res., 89, 11749–11757,
https://doi.org/10.1029/JD089iD07p11749, 1984.

Küttel, M., Steig, E. J., Ding, Q., Monaghan, A. J., and Bat-
tisti, D. S.: Seasonal climate information preserved in West
Antarctic ice core water isotopes: relationships to temperature,
large-scale circulation, and sea ice, Clim. Dyn., 39, 1841–1857,
https://doi.org/10.1007/s00382-012-1460-7, 2012.

Clim. Past, 17, 1587–1605, 2021 https://doi.org/10.5194/cp-17-1587-2021

https://doi.org/10.5281/zenodo.4001565
https://github.com/EarthSystemDiagnostics/optimalcores
https://doi.org/10.5281/zenodo.5075439
https://doi.org/10.17815/jlsrf-2-152
https://doi.org/10.17815/jlsrf-2-152
https://doi.org/10.5194/tc-9-925-2015
https://doi.org/10.1111/j.1600-0889.2009.00423.x
https://doi.org/10.1111/j.1600-0889.2009.00423.x
https://doi.org/10.5194/cp-16-1581-2020
https://doi.org/10.3402/tellusa.v16i4.8993
https://doi.org/10.1038/nature05301
https://doi.org/10.1017/S0260305500005942
https://doi.org/10.5194/cp-14-923-2018
https://doi.org/10.5194/cp-14-923-2018
https://doi.org/10.1515/popore-2017-0006
https://doi.org/10.1175/1520-0442(1997)010<2548:ESEILS>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<2548:ESEILS>2.0.CO;2
https://doi.org/10.1038/311024a0
https://doi.org/10.1029/JD089iD07p11749
https://doi.org/10.1007/s00382-012-1460-7


T. Münch et al: Optimal ice-core arrangement 1605

Laepple, T., Werner, M., and Lohmann, G.: Synchronic-
ity of Antarctic temperatures and local solar inso-
lation on orbital timescales, Nature, 471, 91–94,
https://doi.org/10.1038/nature09825, 2011.

Laepple, T., Hörhold, M., Münch, T., Freitag, J., Weg-
ner, A., and Kipfstuhl, S.: Layering of surface snow
and firn at Kohnen Station, Antarctica: Noise or sea-
sonal signal?, J. Geophys. Res.-Earth Surf., 121, 1849–1860,
https://doi.org/10.1002/2016JF003919, 2016.

Laepple, T., Münch, T., Casado, M., Hoerhold, M., Landais, A., and
Kipfstuhl, S.: On the similarity and apparent cycles of isotopic
variations in East Antarctic snow pits, The Cryosphere, 12, 169–
187, https://doi.org/10.5194/tc-12-169-2018, 2018.

Lorius, C., Merlivat, L., and Hagemann, R.: Variation in the Mean
Deuterium Content of Precipitations in Antarctica, J. Geophys.
Res., 74, 7027–7031, https://doi.org/10.1029/JC074i028p07027,
1969.

Madsen, M. V., Steen-Larsen, H. C., Hörhold, M., Box, J.,
Berben, S. M. P., Capron, E., Faber, A.-K., Hubbard, A.,
Jensen, M. F., Jones, T. R., Kipfstuhl, S., Koldtoft, I., Pil-
lar, H. R., Vaughn, B. H., Vladimirova, D., and Dahl-
Jensen, D.: Evidence of Isotopic Fractionation During Va-
por Exchange Between the Atmosphere and the Snow Sur-
face in Greenland, J. Geophys. Res.-Atmos., 124, 2932–2945,
https://doi.org/10.1029/2018JD029619, 2019.

Masson-Delmotte, V., Hou, S., Ekaykin, A., Jouzel, J., Aristarain,
A., Bernardo, R. T., Bromwich, D., Cattani, O., Delmotte,
M., Falourd, S., Frezzotti, M., Gallée, H., Genoni, L., Isaks-
son, E., Landais, A., Helsen, M. M., Hoffmann, G., Lopez,
J., Morgan, V., Motoyama, H., Noone, D., Oerter, H., Petit,
J. R., Royer, A., Uemura, R., Schmidt, G. A., Schlosser, E.,
Simões, J. C., Steig, E. J., Stenni, B., Stievenard, M., van den
Broeke, M. R., van de Wal, R. S. W., van de Berg, W. J.,
Vimeux, F., and White, J. W. C.: A Review of Antarctic Sur-
face Snow Isotopic Composition: Observations, Atmospheric
Circulation, and Isotopic Modeling, J. Climate, 21, 3359–3387,
https://doi.org/10.1175/2007JCLI2139.1, 2008.

Münch, T.: optimalcores: An R software project to analyse optimal
ice core locations in a climate model simulation, v1.0.0, Zenodo
[code], https://doi.org/10.5281/zenodo.5075439, 2021.

Münch, T. and Laepple, T.: What climate signal is contained in
decadal- to centennial-scale isotope variations from Antarctic ice
cores?, Clim. Past, 14, 2053–2070, https://doi.org/10.5194/cp-
14-2053-2018, 2018.

Münch, T. and Werner, M.: Antarctic time series of tem-
perature, precipitation, and stable isotopes in precip-
itation from the ECHAM5/MPI-OM-wiso past1000
climate model simulation, v0.1.0, Zenodo [data set],
https://doi.org/10.5281/zenodo.4001565, 2020.

Münch, T., Kipfstuhl, S., Freitag, J., Meyer, H., and Laep-
ple, T.: Regional climate signal vs. local noise: a two-
dimensional view of water isotopes in Antarctic firn at Kohnen
Station, Dronning Maud Land, Clim. Past, 12, 1565–1581,
https://doi.org/10.5194/cp-12-1565-2016, 2016.

Münch, T., Kipfstuhl, S., Freitag, J., Meyer, H., and Laep-
ple, T.: Constraints on post-depositional isotope modifi-
cations in East Antarctic firn from analysing temporal
changes of isotope profiles, The Cryosphere, 11, 2175–2188,
https://doi.org/10.5194/tc-11-2175-2017, 2017.

Passalacqua, O., Cavitte, M., Gagliardini, O., Gillet-Chaulet, F.,
Parrenin, F., Ritz, C., and Young, D.: Brief communication: Can-
didate sites of 1.5 Myr old ice 37 km southwest of the Dome
C summit, East Antarctica, The Cryosphere, 12, 2167–2174,
https://doi.org/10.5194/tc-12-2167-2018, 2018.

Persson, A., Langen, P. L., Ditlevsen, P., and Vinther, B. M.: The
influence of precipitation weighting on interannual variability
of stable water isotopes in Greenland, J. Geophys. Res., 116,
D20120, https://doi.org/10.1029/2010JD015517, 2011.

Schleiss, M. and Smith, J. A.: Two Simple Metrics for Quan-
tifying Rainfall Intermittency: The Burstiness and Mem-
ory of Interamount Times, J. Hydrometeor., 17, 421–436,
https://doi.org/10.1175/JHM-D-15-0078.1, 2015.

Schlosser, E., Reijmer, C., Oerter, H., and Graf, W.: The influ-
ence of precipitation origin on the δ18O–T relationship at Neu-
mayer station, Ekströmisen, Antarctica, Ann. Glaciol., 39, 41–
48, https://doi.org/10.3189/172756404781814276, 2004.

Sjolte, J., Hoffmann, G., Johnsen, S. J., Vinther, B. M.,
Masson-Delmotte, V., and Sturm, C.: Modeling the water iso-
topes in Greenland precipitation 1959–2001 with the meso-
scale model REMO-iso, J. Geophys. Res., 116, D18105,
https://doi.org/10.1029/2010JD015287, 2011.

Sjolte, J., Sturm, C., Adolphi, F., Vinther, B. M., Werner, M.,
Lohmann, G., and Muscheler, R.: Solar and volcanic forcing of
North Atlantic climate inferred from a process-based reconstruc-
tion, Clim. Past, 14, 1179–1194, https://doi.org/10.5194/cp-14-
1179-2018, 2018.

Sodemann, H., Masson-Delmotte, V., Schwierz, C., Vinther, B. M.,
and Wernli, H.: Interannual variability of Greenland winter pre-
cipitation sources: 2. Effects of North Atlantic Oscillation vari-
ability on stable isotopes in precipitation, J. Geophys. Res., 113,
D12111, https://doi.org/10.1029/2007JD009416, 2008.

Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Win-
kler, R., Satow, K., Prié, F., Bayou, N., Brun, E., Cuffey, K.
M., Dahl-Jensen, D., Dumont, M., Guillevic, M., Kipfstuhl, S.,
Landais, A., Popp, T., Risi, C., Steffen, K., Stenni, B., and
Sveinbjörnsdottír, A. E.: What controls the isotopic compo-
sition of Greenland surface snow?, Clim. Past, 10, 377–392,
https://doi.org/10.5194/cp-10-377-2014, 2014.

Steig, E. J., Grootes, P. M., and Stuiver, M.: Seasonal Precipita-
tion Timing and Ice Core Records, Science, 266, 1885–1886,
https://doi.org/10.1126/science.266.5192.1885, 1994.

Stenni, B., Curran, M. A. J., Abram, N. J., Orsi, A., Goursaud, S.,
Masson-Delmotte, V., Neukom, R., Goosse, H., Divine, D., van
Ommen, T., Steig, E. J., Dixon, D. A., Thomas, E. R., Bertler,
N. A. N., Isaksson, E., Ekaykin, A., Werner, M., and Frez-
zotti, M.: Antarctic climate variability on regional and continen-
tal scales over the last 2000 years, Clim. Past, 13, 1609–1634,
https://doi.org/10.5194/cp-13-1609-2017, 2017.

Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., and
Lohmann, G.: Stable water isotopes in the ECHAM5 gen-
eral circulation model: Toward high-resolution isotope mod-
eling on a global scale, J. Geophys. Res., 116, D15109,
https://doi.org/10.1029/2011JD015681, 2011.

Werner, M., Haese, B., Xu, X., Zhang, X., Butzin, M., and
Lohmann, G.: Glacial–interglacial changes in H218O, HDO
and deuterium excess – results from the fully coupled
ECHAM5/MPI-OM Earth system model, Geosci. Model Dev.,
9, 647–670, https://doi.org/10.5194/gmd-9-647-2016, 2016.

https://doi.org/10.5194/cp-17-1587-2021 Clim. Past, 17, 1587–1605, 2021

https://doi.org/10.1038/nature09825
https://doi.org/10.1002/2016JF003919
https://doi.org/10.5194/tc-12-169-2018
https://doi.org/10.1029/JC074i028p07027
https://doi.org/10.1029/2018JD029619
https://doi.org/10.1175/2007JCLI2139.1
https://doi.org/10.5281/zenodo.5075439
https://doi.org/10.5194/cp-14-2053-2018
https://doi.org/10.5194/cp-14-2053-2018
https://doi.org/10.5281/zenodo.4001565
https://doi.org/10.5194/cp-12-1565-2016
https://doi.org/10.5194/tc-11-2175-2017
https://doi.org/10.5194/tc-12-2167-2018
https://doi.org/10.1029/2010JD015517
https://doi.org/10.1175/JHM-D-15-0078.1
https://doi.org/10.3189/172756404781814276
https://doi.org/10.1029/2010JD015287
https://doi.org/10.5194/cp-14-1179-2018
https://doi.org/10.5194/cp-14-1179-2018
https://doi.org/10.1029/2007JD009416
https://doi.org/10.5194/cp-10-377-2014
https://doi.org/10.1126/science.266.5192.1885
https://doi.org/10.5194/cp-13-1609-2017
https://doi.org/10.1029/2011JD015681
https://doi.org/10.5194/gmd-9-647-2016

	Abstract
	Introduction
	Data and methods
	Climate model data
	Data processing
	Data analyses
	General approach
	Assessing optimal reconstructions
	Study regions


	Results
	Spatial scale of the temperature anomalies and the local temperature–isotope relationship
	Spatial correlation with local temperature
	Selecting optimal ice-core sites for temperature reconstructions
	Optimal ice-core sampling structures

	Discussion
	Dependence on radial distance
	Conceptual model of the optimal sampling structure
	Relevance for ice-core studies

	Conclusions
	Appendix A: Conceptual model of sampling correlation structures
	Appendix A1: General model
	Appendix A2: Temperature
	Appendix A3: Precipitation-weighted temperature
	Appendix A4: Precipitation-weighted oxygen isotope composition
	Appendix A5: Model parameter estimation and model results

	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

