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ABSTRACT. Accurate dating in ice sheets is required for a correct interpretation of
palaeoclimatic records and for incorporation of material characteristics in the flow law
which depend on ice age. In this paper, we make a comparison between a Lagrangian
and Eulerian approach to the ice advection problem in numerical ice-sheet models. This
comparison is first performed for a schematic two-dimensional ice sheet of Nye^Vialov
type with a prescribed stationary velocity field. Several cases are examined which incorp-
orate basal melting, basal sliding and an undulating bed. A further comparison is made
with an analytical solution for the ice divide. Both methods are also applied in a thermo-
mechanical model of the Antarctic ice sheet for steady-state present-day conditions. Our
main conclusion is that, for similar discretization parameters, the Lagrangian method
produces less error than an Eulerian approach using a second-order upwinding finite-
difference scheme, though the difference is small (51%) for the largest part of the model
domain. However, problems with the Lagrangian approach are introduced by the disper-
sion of tracers, necessitating the use of interpolation procedures that are a main source of
additional error. It is also shown that a cubic-spline approximation of Lagrangian trajec-
tories improves accuracy, but such a method is computationally hardly applicable in
large-scale ice-sheet models.

1. INTRODUCTION

Interpretation of palaeoclimatic records in ice sheets
requires accurate dating. Conventional stratigraphic tech-
niques fail below the depth where annual signals in chemi-
cal and physical properties become indistinguishable due to
layer thinning and diffusion (e.g. Reeh, 1989; Johnsen and
others, 2001). Here models present the only recourse for
computing age^depth profiles. General knowledge of the
age distribution in large ice sheets is also required to incorp-
orate physical characteristics of the ice in flow laws which
depend on the age of the ice or its strain history. An example
is the hardness difference between Holocene and Wisconsin
ice found in the Greenland ice sheet, which has to be taken
into account to model thinning rates in the basal layers cor-
rectly (Huybrechts,1994).

The dating problem canbe solved analyticallyonly for a
limited number of cases where the horizontal advection of
ice can be neglected or prescribed in terms of a simple
model. Other limitations include the difficulty of dealing
with temporal variations in accumulation rate, flow pat-
tern, ice thickness, temperature and ice rheology (Reeh,
1989). Elaborate three-dimensional ice-sheet models are
needed to deal with these parameters. In such flow models,
the age distribution is derived from the numerical solution
of a purely advective equation. There are essentially two
ways to solve such an equation. The Eulerian method con-
siders age as a transportable quantity by solving the advec-
tive equation in a frame fixed in space. Due to the nature of
the equation, straightforward finite-difference schemes of
the type central in space are known to be unconditionally
unstable, requiring the use of diffusive schemes. First

attempts to model the age distribution in large ice-sheet
models added an artificial diffusion term to the numerical
solution to damp the instabilities (Huybrechts, 1994; Greve,
1997; Greve and others, 1999). However, this method is not
very accurate in the basal layers, and reliable solutions can
only be obtained for the upper half of an ice sheet. In recent
work, Greve and others (2002) have shown that for the one-
dimensional case a second-order upwinding scheme for the
vertical advection term is stable and yields an accuracy of
499% for a grid in excess of 60 points.

The alternative way to deal with the age equation is to
consider a frame following the motion, which is a numeri-
cally diffusion-free scheme. In the Lagrangian approach,
the path of a particle is tracked through the numerical grid
as the ice sheet evolves through time. Its application in a
three-dimensional numerical ice-sheet model was discussed
by Clarke and Marshall (2002).They use the term `̀marker’’
instead of `̀ tracer’’, and each particle has its own `̀ birth cer-
tificate’’, since it can carry information on any conservative
characteristic (e.g. time of deposition, place of deposition,
water isotopes). Moreover, the Lagrangianapproach makes
it possible to reverse time and to carry out backward
tracing. The Lagrangian approach discussed in this paper
is distinct from the semi-Lagrangian technique as widely
used in, for instance, meteorological applications. In a
semi-Lagrangian approach, the solution is provided on a
regular grid, but this is achieved by using a different set of
particles at each time-step, the set of particles being chosen
such that they arrive exactly at the points of a Cartesian
mesh at the end of the time-step (Bates and McDonald,
1982; Staniforth and Coª të, 1991). The main advantage of a
semi-Lagrangian numerical scheme over an Eulerian one
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is the greatly improved stability properties, because it
makes it possible to overcome the Courant^Friedrichs^
Levy (CFL) restriction on time-steps (Machenhauer and
Olk,1997). It is therefore often used for problems with large
Courant numbers, where the product of velocity and time-
step is significant compared to grid size. In ice sheets, how-
ever, Courant numbers are much smaller, and such large
time-steps are not needed as they would imply an unaccepta-
ble loss of accuracy. In addition, the semi-Lagrangian
method does not allow reconstruction of the trajectory of an
individual particle.

The objective of this paper is to assess the merits and
shortcomings of both the Eulerian and Lagrangian methods
and to perform a detailed quantitative comparison of their
(relative) accuracy. In section 2 we give a general outline of
both numerical approaches . In section 3 we consider a series
of simple schematic two-dimensional ice-sheet models in the
vertical plane and describe the results of a comparison of the
date distribution under the different model set-ups. The ice
divide is a special case, for which a perfect analytical solution
is available to compare with the numerical results. We also
test a linear and a cubic-spline interpolation method for the
Lagrangian scheme. Problems with the application of both
interpolation methods are discussed with respect to the hori-
zontal velocity field. In section 4 we apply the Eulerian and
Lagrangian methods in a three-dimensional Antarctic ice-
sheet model. For this purpose, we consider an experiment
under present-day climatic conditions. Results of the compar-
ison of the two approaches, and the main conclusions follow
in section 5. In this paper, we limit ourselves to stationary
problems, as the emphasis is on investigatingbasic differences
between the two approaches for the simplest cases. Time-de-
pendent applications will be discussed in future work.

2. NUMERICAL DATING METHODS

Hereafter we shall understand under the quantity A the
absolute moment in time when a particle was deposited at
the surface. This quantity is negative in the past. Since all
results discussed in the paper are for integrations ending at
the present day, these dates of deposition can also be inter-
preted as negative ages BP (before present), in accordance
with the more usual definitions given in the literature.

2.1. Eulerian approach

We consider a Cartesian coordinate system with x; y the
horizontal plane, z the vertical, and t time.The fundamental
equation states that date of deposition A is a quantity that is
conserved with time:

dA

dt
ˆ 0 ; …1†

where d=dt is the full (total) time derivative. In an Eulerian
frame, this equation can be rewritten with a partial (local)
time derivative as:

@A

@t
‡ vx

@A

@x
‡ vy

@A

@y
‡ vz

@A

@z
ˆ 0 ; …2†

where vx; vy; vz are components of the three-dimensional
velocity field. Boundary conditions are A…x; y; z ˆ H ‡ h; t†
ˆ t at the surface, with H ice thickness and h bed elevation.
For an ice sheet frozen to the bottom, the date of deposition is
undefined at the base (or physically equal to the time the first
permanent ice cover settled at that particular location). In the

case of basal melting, a flux boundary condition can be set at
the base as follows:

@A

@t
ˆ B

@A

@z
¡ vx…z ˆ h† @A

@x
‡ vy…z ˆ h† @A

@y

³ ´
; …3†

where B is the basal melting rate (m a^1), positive in the case
of basal melting. In all runs discussed in this paper, we use
second-order upwinding for all the advection terms. Since
we only consider cases with basal melting, implying strict
downward motion perpendicular to the ice layers, the basal
boundary condition on A actually stands on its own and is
never invoked to compute the date of deposition elsewhere.
This prevents an arbitrarychoice of basal ice age from pollut-
ing the solution at another location in the ice sheet. The case
with negative B (basal freeze-on) cannot be handled with
Equation (3) and is excluded from the analysis in this paper.

2.2. Lagrangian approach

In a Lagrangian frame which follows the particles, Equa-
tion (1) can be discretized in a straightforward way without
any artificial diffusion.The approach consists of integration
of a vector evolution equation:

dX

dt
ˆ V…x; y; z; t† ; …4†

where X…t† is the position vector of the ice particle and
V …x; y; z; t† is the velocity field in the ice sheet. The initial
condition for Equation (4) states that the trajectory of an
ice particle deposited at the surface starts at time t0 ˆ A at
the free surface H ‡ h:

X…t0† ˆ x0; y0; z ˆ …H ‡ h†x0;y0 ;t

± ²
: …5†

A trajectory ends when a particle crosses an arbitrary con-
ventional bottom (we use 99% of relative depth) or leaves
the ice sheet through its lateral margins.

The general problem in the Lagrangian approach con-
sists of proper numerical interpolation of the velocity field.
If piecewise linear interpolation is used, the velocity field is
computed as a weighted sum of the field values in the sur-
rounding gridpoints (four in two-dimensional space, eight
in three-dimensional space). Cubic-spline interpolation
requires knowledge of the velocity values in all or a subset
of the model domain (Press and others,1992).

3. SCHEMATIC TESTS IN A TWO-DIMENSIONAL
VERTICAL PLANE

First we assume a series of schematic experiments represent-
ing ideal cases to compare the Eulerian and Lagrangian
approaches. The first of these experiments is for a flat bed-
rock under a steady state (standard model). Further sche-
matic experiments test the effects of basal sliding, basal
melting and an undulating bedrock.

3.1. Design of the standard experiment

We consider a two-dimensional ice sheet on a flat bedrock at
z ˆ 0 for which the surface profile can be given as:

H…x† ˆ H0 1 ¡ x

L

± ²n‡1
n

µ ¶ n
2…n‡1†

; …6†
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where

H0 ˆ 20M

A

³ ´ 1
2…n‡1† 1

»g

³ ´ n
2…n‡1†

L
1
2 : …7†

This is the well-known Nye^Vialov solution (Paterson,1994),
in which H is ice thickness (m), equated here to surface eleva-
tion, H0 is the heightof the ice sheet at the divide (m), L is the
half-width of the profile (106 m), A is the rate factor of the flow
law (10^16 Pa^3 a^1), n is the flow-law exponent (taken to be 3),
» is ice density (910 kg m^3), g is acceleration of gravity
(9.81m s^2 ) and M is the mass balance (m a^1).With a typical
value of M ˆ 0.1m a^1, corresponding to a large polar ice
sheet, we obtain a value for H0 of 3598.4 m (seeTable1).

The horizontal velocity field as a function of depth can
be derived along the flowline from Equations (6) and (7) to
yield the following expression:

vx…x; z† ˆ ¡ 2A

n ‡ 1
…»g†n @H

@x




n¡1@H

@x
Hn‡1 ¡ …H ¡ z†n‡1

h i
:

…8†
For the vertical velocity vz a simple linear expression is

used. This expression is not consistent with vx as provided
by Equation (8) but is used for simplicity because it allows
for a straightforward analytical comparison at the divide:

vz…x; z† ˆ z

H…x†
¡G ‡ B ‡ vx…x; H† @H…x†

@x

µ ¶
¡ B : …9†

Equations (6^9) entirely define a well-circumscribed
problem for the purpose of comparing the dating methods.
In practice, we use a dimensionless vertical coordinate
scaled to ice thickness, and transform Equations (8) and (9)
to this new system. Both the Lagrangian and Eulerian cal-
culations take place directly in the transformed system.

The domain of the ice sheet given by Equations (6) and
(7) is discretized by 1016101 gridpoints, equally spaced in
dimensionless space. The experiments run for 500 kyr with
a time-step of 1year. Since the ice sheet is symmetrical with
respect to the ice divide, we consider only the righthand
domain, which consists of horizontal gridpoints 51^101.
The Lagrangian method uses cubic-spline interpolation for
the position integration. The results are shown in Figure 1.
They are only valid for the upper 99% of ice thickness and
between the divide and x ˆ 980 km, because both bound-
aries are singular for one or both of the methods.

In steady state, particle trajectories are equivalent to
streamlines. These are shown in the top panel of Figure 1.
Only 6 tracers out of 51 reach a relative depth of 99%, while
the others finish at the margin. This immediately demon-
strates a basic problem with the Lagrangian method: in the
deeper layers of the sheet, it yields less information than the
Eulerian method, leading to an inherent loss of detail with
depth. In our comparison, we solve this problem by launch-
ing 45 additional tracers between gridpoints 51 and 56, giv-
ing a density of 51markers at 99% depth, comparable to the
Eulerian method. For clarity, however, these are not shown
on the streamline plot.

On the scale of the plots, the two dating methods are
almost indistinguishable.We therefore define a relative dif-
ference on date of deposition (`̀ Eulerian error’’) as follows:

EE ˆ AE ¡ AL

AL
£ 100% ; …10†

where AE is Eulerian date and AL Lagrangian date. Nega-
tive relative differences indicate that the Lagrangian ice is

older (i.e. the date of deposition is more negative) than the
Eulerian ice for the same position. The relative difference
between the two methods is very small (50.1%) for most
of the ice sheet, except at the model boundaries. The prob-

Fig. 1. Results for the standard model run with flat bedrock, no
basal melting and no basal sliding (experiment A). The
streamlines are a direct output of the Lagrangian method and
coincide with particle paths for a stationary state.The lower
panels show the calculated dates of deposition from the
Lagrangian and Eulerian methods, as well as their relative
difference. Results are shown in the square that arises from
the dimensionless vertical coordinate scaled to ice thickness.
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able reasons for these differences are discussed in section 3.4
further below.

3.2. Comparison with an analytical solution at the
divide

For the simple stationary case of no bottom melting, no hori-
zontal advection, and constant vertical strain rate, a simple
logarithmic expression for the date-of-deposition profile
with depth can be derived, corresponding to our standard
experiment at the divide:

A ˆ H0

G
ln

z

H0
; …11†

where G is the surface accumulation rate, here equal to the
mass balance M. This analytical derivation is due to Nye
(1963) and Haefeli (1963), and is known as the Nye^Haefeli
time-scale.

We compare the analytical result at the divide with the
numerical solution of the standard experiment A. In this
case, the relative error of the numerical method is defined as:

Enum ˆ Anum ¡ Aan

Aan



£ 100% ; …12†

where Anum is the date of deposition computed by either
numerical method (Eulerian or Lagrangian), and Aan is
given by Equation (11). The result is displayed in Figure 2.
Clearly, the Lagrangianmethod produces less error, as is evi-
dent from the logarithmic scale required to show the relative
errors. All along the vertical, the Lagrangianmethod slightly
underestimates the date of deposition (i.e. produces an older
date) but witha relative error alwaysbelow 0.1% andoften as

good as 0.001%.This error depends on the time-step and the
grid size and is due to the accumulation of errors during the
subsequent position interpolations of the ice particle travel-
ling downwards. Relative to the date, this error becomes
smaller the smaller the vertical velocity becomes nearer to
the bottom. The error on the Eulerian calculations is also
acceptably small, but has a different profile with depth.
Except for the upper two vertical gridpoints, where second-
order upwinding cannot be used and a two-point upwinding
scheme is only accurate to first order, the relative error is
always 50.1% down to a relative depth of approximately
93%. For most of this part, Enum is negative, that is, the
Eulerian date is more recent than the analytical solution,
but Enum changes sign at 84% depth, when it becomes posi-
tive. Near to the bottom, the Eulerian error increases rather
abruptly to a substantial level of several per cent.This origin-
ates from an inability of the numerical scheme to produce a
precise result close to the lower boundary. There, the accu-
racy of the finite-difference scheme changes from second to
first order, and gradients also become very large.

3.3. Design of additional schematic tests

To test more challenging conditions more like real world-
conditions, we modified the standard model set-up to inves-
tigate the effects of basal sliding, basal melting and an undu-
lating bedrock. The modifications to the standard model
are listed in Table 1. In all of the additional experiments,
the requirement was that the vertically integrated ice flux
along the flowline was identical to that in the standard
model. Also the surface profile was retained from the stan-
dard experiment. Although these additional tests violate
basic principles underlying the Nye^Vialov solution, this is
unproblematic as long as identical velocity and ice-thickness
fields are used to compare the two dating methods. The
basic design of the additional four experiments can be
derived from the first column of streamline plots in Figure 3.

To meet the requirement of flux conservation, the basal
melting experiment (experiment B) has to increase the sur-
face accumulation by the same amount as the basal melting
rate of B ˆ 0.02 m a^1. The major effect of this modification
is a non-zero vertical velocity at the base, resulting in more
recent ice in the basal layers as compared to the standard
experiment. By contrast, the introduction of basal sliding
(experiment C) causes a flattening of the trajectories to

Fig. 2.The error on date of deposition for both methods relative to
the analytical solution at the ice divide.The upper logarithmic
axis is for the full line (Lagrangian), and the lower linear axis
refers to the stippled line (Eulerian).

Table 1. Parameter values for the various schematic tests in a
two-dimensional plane

Model
experiment

Description Accumu-
lation

G

Basal
melting

B

Mass
balance

M

Basal
sliding

Ub

Equation
(13)
c

m a^1 m a^1 m a^1 m a^1

A Standard 0.10 0 0.10 ^ ^
B Basal melting 0.12 0.02 0.10 ^ ^
C Basal sliding 0.10 0 0.10 0.5hUi ^
D Undulating bedrock 0.10 0 0.10 ^ 0.5
E Basal sliding and

undulating bedrock
0.10 0 0.10 0.5hUi 0.5

Notes: hUi is the vertically averaged horizontal velocity corresponding to
experiment A. The last column is for a parameter that gives the ampli-
tude of bedrock undulations in Equation (13).
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resemble hyperbolas such that only the tracer starting at the
divide reaches a depth of 99%, whereas the other tracers
leave at the margin at x ˆ 980 km. In this case, a 50^50 par-
titioning was put forward between horizontal movement due
to deformation and due to basal sliding. To investigate the
effect of a non-flat bed, an undulating bedrock profile
(experiment D) was obtained as follows:

h…x† ˆ cH…x† 1 ‡ cos
6ºx

L

³ ´
; …13†

where c is a constant between 0 and 1 that gives the ampli-
tude of the waves as a fraction of ice thickness H…x† in the
standard experiment. To preserve the flux, the horizontal
velocities are now scaled to the difference between the sur-

face profile of the standard experiment and the revised bed
elevation. Particles now follow an undulating pattern, with
higher speeds over thinner ice and lower speeds over thicker
ice, compared to the standard experiment. Finally, experi-
ment E combines both an undulating bedrock and basal
sliding.

3.4. Diversity in ice-age patterns produced by the two
dating methods

From close inspection of Figures1and 3 a number of general
inferences can be drawn. The overriding conclusion is that
the difference between the Lagrangian and Eulerian meth-
ods is very small. In general, the relative difference does not

Fig. 3. Results for the additional tests performed for a schematic two-dimensional stationary ice sheet showing streamlines,
Lagrangian date and the relative difference between Lagrangian and Eulerian dates of deposition.The bold letters in the upper
right corner refer to the specific experiment: B, basal melting; C, basal sliding; D, undulating bedrock; E, undulating bedrock and
basal sliding (cf.Table 1and the text for more details).
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exceed 0.5% for most of the ice sheet. Larger relative differ-
ences only occur at the top and basal boundaries, and near
to the lateral margin.This pattern is qualitatively similar for
all schematic experiments. The reason for these systematic
differences originates from the different methods and differ-
ent sources of numerical errors. We cannot assess which
method is closer to perfection, since no exact solution exists
except at the divide. Nevertheless, the relative comparisons
permit some conclusions.

It is reasonable to assume that the difference between the
two methods near to the base and at the top is due to imper-
fections in the Eulerian scheme, since that is what the divide
comparison brought to light. However, near the lateral mar-
gin (righthand margin of Fig. 4) the difference could also be
attributed to the Lagrangian scheme due to the cumulative
nature of its errors. In the Lagrangian approach, errors are
proportional to travel time and to the velocity magnitude.
Therefore the largest error will be at the end of the trajectory
of a particle at the margin, where both quantities are largest.

3.5. Problems of interpolation in the Lagrangian
approach

The problem of applying the Lagrangianapproach and com-
paring it with the Eulerian method is fundamentally a
problemof interpolation. Since the velocity field is prescribed
on a regular grid, and a particle’s position needs to be
obtained in any point during a model run, one has to inter-
polate the velocity field between gridpoints to obtain spatial
increments of a particle’s position. Further, since the positionof
aparticle is computed stepby step, these errors are cumulative.
The second problem arises from the comparison itself and is
due to uneven spatial coverage of tracers. The only solution to
the latter problem is a higher abundance of initial tracers. A
preliminary analysis of the flow is therefore necessary to
decide at which location, and at which frequency in time-
dependent applications, additionaltracers need to be launched.

Concerning the first problem, it is clear that bi-cubic-
spline interpolation is better than piecewise bilinear inter-

polation.This is demonstrated in Figure 4. In Figure 4a we
compute the modulus of the relative error of both methods
of interpolation for the horizontal velocity with respect to
the analytical result as given by Equation (8), and average
the result over the vertical coordinate.That provides a good
measure of interpolation errors. It can be seen that spline
interpolation of the horizontal velocity is three to as much
as seven orders of magnitude more accurate than linear
interpolation. In our schematic set-up, the interpolation
error onvelocity almost exclusively originates from the hori-
zontal velocity component because the vertical velocity is
linear, and therefore both interpolation methods give
similar results for the vertical to within computer accuracy.
Based on the results shown in Figure 4a, we can safely con-
sider the spline interpolation results as the reference state to
assess the accuracy of the linear interpolation method.

We find that linear interpolationgenerally leads to under-
estimation of the velocity and therefore to smaller displace-
ments and a calculated date of deposition that is earlier as
compared to the spline method.This fact is illustrated in Fig-
ure 4b, where the cumulative error on date is shown for the
transect at the margin at x ˆ 980 km. Still, the absolute value
of accumulated error on date of deposition of approximately
1200years in the lower layers corresponds to a relative error
of 51.5%. Similar results were obtained at other locations
closer to the divide, giving a typical relative error on date by
linear interpolation of about1% at 90% depth.

The difference between the two methods of date estima-
tion is therefore small, and linear interpolation can be
expected to yield acceptable results. This is the more so in
view of the large central processing unit (CPU) time
required for spline interpolation whose magnitude makes it
hardly applicable in a three-dimensional ice-sheet model.
The main reason is that spline interpolation is not a local
interpolation technique but requires calculation of two par-
tial derivatives at the tracer’s position at every time-step
(Press and others, 1992). In three-dimensional applications,
the additional CPU cost is at least two orders of magnitude
larger than for linear interpolation.

Fig. 4. (a) Relative error of interpolation (%) of the linear and the cubic-spline methods for the horizontal velocity in the standard
experiment. (b) Cumulative error on date of deposition using linear interpolation in the Lagrangian scheme at a position 980 km
from the divide.
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4. APPLICATION IN ATHREE-DIMENSIONAL
ANTARCTIC ICE-SHEET MODEL

4.1. Experimental set-up

To assess the applicability of the two dating methods under
real conditions, we implemented the age-calculationroutines
in a three-dimensional thermomechanical model of the Ant-
arctic ice sheet (Huybrechts and deWolde,1999; Huybrechts,
2002). This model is time-dependent, calculates the coupled
velocity and temperature fields, and has components describ-
ing basal sliding, basal melting, the surface climate, isostatic
adjustment, and the flow in a coupled ice shelf.The horizontal
resolution is 20 km and there are 31 layers in the vertical,
gradually decreasing in thickness towards the base. The
model employs a dimensionless vertical coordinate scaled to
ice thickness with grid spacings of 5% of ice thickness at the
surface and1% at the base.

The model was run for stationary present-day climatic
conditions.The only constraint compared to recent applica-
tions of the model is that the grounding line was fixed to its
current position. Ice thickness is, however, still a free vari-
able allowed to establish an equilibrium with the climate
forcing and the flow law. Consequently, the vertical velocity
is obtained from the continuity equation and retains full
consistency with the horizontal velocity components and
the surface mass balance, which is positive over the entire
model domain. Basal melting and basal sliding occur in the
model whenever basal temperature reaches the pressure-
melting point. The Antarctic experiment therefore com-
bines all of the features discussed in the schematic experi-
ments above, with the notable exception that vertical
velocity is no longer linear.

For the Eulerian ice-date computations, the same sec-
ond-order upwinding scheme was used as in the schematic
experiments, and, for the Lagrangian method, piecewise
linear interpolation was applied for tracking tracer position
in between gridpoints. The calculations took place directly
within the transformed coordinate system, ensuring that
vertical movement is always directed downwards over the
entire model domain, thus avoiding basal boundary-condi-
tion problems in the upwinding advection scheme. For the
Lagrangian computations, tracers were launched only once
at the surface at the initial time for every groundedgridpoint.
The total number of tracers therefore equalled approxi-
mately 30500 outof a total number of 2816281 ˆ78 961 hori-
zontal gridpoints.The total integration time was 500 kyr for
both methods, with a time-step of 5 years. This is a long
enough period to ensure that a stationary solution is estab-
lished for the advection equation and that all tracers that
have remained within the grounded ice sheet are well below
90% depth. For the Eulerian calculations, the initial condi-
tion on date of deposition consisted of the analytical result
given by Equation (11). To facilitate the experiment, the
Lagrangian run was actually run in offline mode with the
velocity output from the Antarctic model for the present time.

4.2. Results

Figure 5 shows an example of the resulting distributions of
the date of deposition at an intermediate depth of 60%.
These results should notbe confused with the `̀ real’’date dis-
tribution in the Antarctic ice sheet since ice thickness and
accumulation rate have not been allowed to vary over the
full length of the integration period in response to climatic

changes (though the accumulation rate has changed in
accordance with surface elevation changes relative to the
observations). Nevertheless, the pattern is expected to be

Fig. 5. Date of deposition computed in the Antarctic ice sheet
for present-day stationary climatic conditions by both meth-
ods, as well as their absolute difference.This example is for
the layer at 60% depth.
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qualitatively similar to reality, with old ice concentrated in
the interior of East Antarctica roughly inversely propor-
tional to the surface accumulation rate, together with much
younger ice at comparable relative depth inWest Antarctica
and at the margin. Also clear are the effects of flow diver-
gence/convergence and of the flow chanelling into the outlet
glaciers that drain most of the ice sheet at the margin. In
general, the two methods give very similar results, with
absolute date differences of maximally §10 kyr, but well
below §2 kyr over most of the area, with the Lagrangian
method giving somewhat older ice at the margin and some-
what younger ice in the interior (Fig. 5).

However, the largest differences occur in zones of large
gradients and can therefore be explained by diffusive effects

in the Eulerian scheme and, probably more importantly, the
irregular distribution of tracers that results for deeper layers
in the Lagrangian method. This is demonstrated in more
detail in Figure 6, marking the positions where tracers have
crossed a given depth layer during the course of the integra-
tion. At a relative depth of 60%, only half of the original tra-
cers remain in the ice sheet, and the other half have migrated
into the surrounding ice shelves or have been washed out in
the ocean. At 90% depth, less than a quarter of the tracers
remain, and they are distributed unevenly in space. It should,
however, be noted that this problem will be less severe when
tracers are launched at regular time intervals in time-depend-
ent applications with changing climatic input and ice-sheet
geometry.

The inverse problem, in which the tracers are used to
compute the relative depth of an isochrone surface, does
not depend on the rhythm by which tracers are launched at
the surface. Figure 7 shows the distribution of the final posi-
tions of tracers 100 kyr after they were launched at the sur-
face. In our steady-state experiment, these are the points
one would have to use to reconstruct the depth of the
100 kyr isochrone surface. Almost all of the remaining
tracers concentrate within interior East Antarctica, with a
very sparse distribution at the margin and in West Antarctica,
and virtually none in the Antarctic Peninsula area. In this
case, the isochrone surface of 100 kyr is marked by only 3109
tracers out of the 30548 initially inserted at the surface.

5. CONCLUDING REMARKS

A comparison of Lagrangian and Eulerian approaches for
ice dating in numerical ice-sheet models has enabled us to
establish the advantages and disadvantagesof the two meth-
ods. From experiments with a schematic ice sheet and an ap-
plication in a three-dimensional thermomechanical model
of the Antarctic ice sheet, our main findings canbe summar-
ized as follows:

1. The traditional Eulerian method, in which ice age is
estimated by solving an advection equation with a sec-

Fig. 6. Distribution of tracer crossings through the 60% and 90% depth layers in the Antarctic experiment, showing how tracers
are gradually concentrated and washed out towards the margin in deeper layers. In this experiment, tracers were launched only once
for every ice-sheet gridpoint on the 2816281 numerical mesh.

Fig. 7. Distribution of tracers at the depth of the isochrone
surface of 100 kyr in the Antarctic model, demonstrating the
problem of tracer density for interpolating age horizons on a
regular numerical grid.
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ond-order upwinding finite-difference scheme, generally
produces larger errors than a Lagrangian method on the
same grid, as evident from the divide solution where an
exact analytical result exists. Relative differences between
the two methods are, however, small (51%) for the larg-
est part of the ice sheet, except near the base, where errors
increase exponentially in the Eulerian method.

2. Errors in the Lagrangian computations essentially find
their origin in interpolation procedures between grid-
points. They accumulate along the trajectory of an ice
particle and are proportional to the age of a particle.
These errors are fundamentally different from those in
the Eulerian approach which arise from numerical dif-
fusive effects. The accuracy problem arising from using
linear interpolation of tracer distributions onto a regular
numerical grid can be alleviated by a higher frequency
of tracer launches.

3. The application of a piecewise linear interpolation algo-
rithm in the Lagrangian approach requires less CPU
time than the numerical solution of the advection equa-
tion. Interpolation by cubic splines is more precise but is
hardly applicable in large-scale ice-sheet models with
present-day computers because of the very large CPU
times required. In time-dependent applications, the
number of data needing to be stored can increase
dramatically, but limits on storage are easier to over-
come than limitations on physical time.

4. A clear advantage of the Eulerian approach is its ease of
implementation and computation. It provides a continu-
ous solution on the same grid as the one on which the ice-
velocity components are provided in a numerical model,
with only little data storage. The Lagrangian approach
inherently leads to loss of information with depth due to
the divergence of ice flow. High basal sliding and com-
paratively low vertical velocity may cause shade effects in
the deeper layers where a particle cannot penetrate or
their final distribution is very sparse. Preliminary analysis
of bottom layers can help to select the optimal amount of
tracers that need to be launched from the surface.

5. A disadvantage of the Eulerian approach is that it cannot
deal with hiatus in the layer sequence due to surface or
bottom melting. The practical application of the
Eulerian method is also limited to smooth and continuous
fields such as ice age or date of deposition. The Lagran-
gian computation can in principle provide the distribu-
tion of any desired conservative property that is carried
with the flow, such as chemical composition and place
and elevation of deposition of the ice.Those are the prop-
erties that need to be studied in detail in connection with
the drilling of deep ice cores.
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and oceanic modelling. The Andrë Robert memorial volume. Toronto, Ont., NRC
Research Press,103^126.

Nye, J. F.1963. Correction factor for accumulationmeasuredby the thickness
of the annual layers in an ice sheet. J. Glaciol., 4(36),785^788.

Paterson,W. S. B.1994.The physics of glaciers.Third edition. Oxford, etc., Elsevier.
Press, W. H., S. A. Teukolsky, W.T. Vetterling and B. P. Flannery. 1992.

Numerical recipes in FORTRAN: the art of scientific computing. Second edition.
Cambridge, Cambridge University Press.

Reeh, N. 1989. Dating by ice flow modeling: a useful tool or an exercise in
applied mathematics? In Oeschger, H. and C. C. Langway, Jr, eds.The
environmental record in glaciers and ice sheets. Chichester, etc., John Wiley
and Sons,141^159.
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