Please ensure that your abstract fits into one column on one page and complies with the *Instructions to Authors* available from the Abstract Submission web page.

Actinium-227 as a tracer for diapycnal mixing and deep upwelling

Walter Geibert¹, Regina usbeck^{1,2} and Michiel M. Rutgers van der Loeff^{1,3}

¹Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27576 Bremerhaven (wgeibert@awi-bremerhaven.de)

²FIELAX Company for Scientific Data Management, Schifferstrasse 10-14, 27568 Bremerhaven, Germany

³ present address: RIKZ, National Inst. For Coastal and Marine Management, P.O.Box 20907, 2500 EX The Hague, The Netherlands

²²⁷Ac is a naturally occuring radioactive tracer (half-life 21.8 years) that is continuously released into the overlying water by deep-sea sediments. Since the pioneering work of Nozaki (1984), it has been recognized that ²²⁷Ac in excess of its progenitor 231 Pa (227 Ac_{ex}) has a huge potential as a tracer for diapycnal mixing in the deep sea. However, data on the distribution of ²²⁷Ac are still scarce due to the difficult sampling and measurement. Recently, some additional information on the global distribution of ²²⁷Ac has become available (Geibert et al. 2002), confirming the results of Nozaki, and adding new insights to the role of deep upwelling for its distribution in the Southern Ocean. There, $^{227}Ac_{ex}$ has been shown to be detectable throughout the water column up to the sea surface as a consequence of intense and rapid vertical exchange of water masses.

Here, we give an overview about the distribution of 227 Ac in the ocean, including new results from inverse modelling. The obtained maps of the modelled global distribution of 227 Ac_{ex} confirm that this tracer closely reflects the underlying patterns of circulation and mixing. Additionally, we give an introduction to the available measurement techniques (different -spectrometric techniques, delayed coincidence counting of its daughter nuclides), and present the potential applications of 227 Ac in the near future.

References

Nozaki, Y. (1984), Nature 310, 486-488.

Geibert, W. et al. (2002), Earth Planet. Sci. Lett. **198** (1-2), 147-165.