Sensitivities and uncertainties in a coupled regional atmosphere-ocean-ice model with respect to the simulation of Arctic sea ice
A series of sensitivity experiments using a coupled regional atmosphere-ocean-ice model of the Arctic has been conducted in order to identify the requirements needed to reproduce observed sea-ice conditions and to address uncertainties in the description of Arctic processes. The ability of the coupled model to reproduce observed summer ice retreat depends largely on a quasi-realistic ice volume at the beginning of the melting period, determined by the relationship between winter growth and summer decay of ice. While summer ice decay is strongly affected by the parameterization of the sea-ice albedo, winter ice growth depends significantly on the parameterization of lateral freezing. Reciprocal model biases due to uncertainties in the atmospheric energy fluxes can be compensated to a certain extent. However, potential underlying weaknesses of the model cannot be eliminated that way. Since lateral freezing also determines the ice concentration during winter, and thus the heat loss of the ocean and the near-surface air temperature, the model tuning possibilities are limited. A large uncertainty in the model relates to the simulation of long-wave radiation most likely as a result of overestimated cloud cover. The results suggest that uncertainties in the descriptions for Arctic clouds, snow, and sea-ice albedo, and lateral freezing and melting of sea ice, including the treatment of snow, are responsible for large deviations in the simulation of Arctic sea ice in coupled models. Improved descriptions of these processes are needed to reduce model biases and to enhance the credibility of future climate change projections. Copyright 2007 by the American Geophysical Union.
Helmholtz Research Programs > MARCOPOLI (2004-2008) > MAR1-Decadal Variability and Global Change
Helmholtz Research Programs > MARCOPOLI (2004-2008) > POL-MARCOPOLI
Helmholtz Research Programs > MARCOPOLI (2004-2008) > POL1-Processes and interactions in the polar climate system