Thermal sensitivity of mitochondrial function in the Antarctic Notothenioid Lepidonotothen nudifrons
The thermal sensitivity of mitochondrial function was investigated in the stenothermal Antarctic fish Lepidonotothen nudifrons. State 3 respiration increases with increasing temperature between 0 °C and 18 °C with a Q10 of 2.43-2.63. State 4 respiration in the presence of oligomycin, an inhibitor of mitochondrial ATP synthase, quantifies the leakage of protons through the inner mitochondrial membrane, which causes oxygen consumption without concomitant ATP production. This parameter shows an unusually high Q10 of 4.21 ± 0.42 (0-18 °C), which indicates that proton leakage does not depend merely on ion diffusion but is an enzyme-catalysed process. The differential thermal sensitivity of oxidative phosphorylation (= state 3) and proton leakage (= state 4 in the presence of oligomycin) leads to progressive uncoupling of the mitochondria and decreased efficiency of oxidative phosphorylation under in vivo conditions if the body temperature of L. nudifrons increases.