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Conclusions

• The changes in the dynamics and structure within the microzooplankton during the experiments suggest that their grazing 
constrained pico- and nanoplankton populations, but mainly species capable of feeding on large diatoms were selectively predated by 

the metazoan community.

→ Tight coupling between prey and predators regulated population dynamics and facilitated population growth of diatoms (trophic
cascade) which dominated the iron-induced phytoplankton bloom.

Introduction
Mesoscale in situ iron fertilisation experiments have resulted in the build-up of phytoplankton biomass and established beyond doubt that iron availability is the 
key factor limiting growth rates of oceanic phytoplankton in “high-nutrient, low-chlorophyll” (HNLC) regimes (see poster Assmy et al.). The response of 
microzooplankton groups (aplastidic dinoflagellates, aloricate and tintinnid ciliates) of the pelagic community and the processes within the pelagic food web (Fig. 1) 
were studied in detail and compared with processes in the surrounding water during two Southern Ocean iron fertilisation experiments conducted in austral spring 
(EisenEx) and in late summer early fall (EIFEX). Species abundance, biomass and taxonomic composition were quantified by microscopic techniques from 
sedimented water samples taken from the mixed surface layer.

Results and Discussion
By the peak of the experiments, 
phytoplankton carbon stocks had increased 
3fold (EIFEX) and 4fold (EisenEX), 
respectively, whereas the microzooplankton
groups showed different trends inside the 
fertilised patch. Copepod grazing 
apparently had a significant impact on their 
temporal development: Aplastidic dino-
flagellates, one of the dominant 
micrograzers (Figs. 2E and F; 3E and F) and 
comprising athecate and thecate forms, 
either decreased from the beginning 
(EIFEX; Figs. 2A, 2D) or significantly 
increased in biomass in the first 10 d of 
the experiment, but decreased thereafter 
to values 2fold higher than pre-fertilisation 
values (EisenEx; Fig. 3A, 3D)  indicating 
heavy grazing mortality mainly by metazoan 
predators. They also constrained ciliate 
carbon stocks which either decreased 
during EIFEX (Fig. 2B) or stayed more or 
less constant during EisenEx (Figs. 3B, 3C). 
Bottle incubation conducted during EisenEx
suggest that aloricate ciliates increased 
growth rates (from 0.23 to 0.41 d-1) with 
higher food availability but grazing 
pressure on them also intensified so that 
no net growth was recorded. However, 
tintinnid biomass increased 3.5fold during 
EIFEX (Fig. 2C) and constituted an 
important component at the end of the 
experiment clearly showing a release of 
grazing pressure probably due to an 
intensification of grazing impact on other 
microzooplankton groups.

Fig. 1: The complex phytoplankton-based food
web (Fig. modified from a graphic by Z. Johnson)
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Fig. 2: Temporal development of A) athecate dinoflagellate, B) aloricate
ciliate, C) tintinnid and D) thecate dinoflagellate biomass during EIFEX 
integrated over 100 m mixed layer depth. Composition of microzooplankton E) 
inside the fertilised patch and F) in unfertilised waters.
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Fig. 3: Temporal development of A) athecate dinoflagellate B) aloricate
ciliate, C) ciliate and D) thecate dinoflagellate biomass during EisenEx
integrated over 80 m mixed layer depth. Composition of microzooplankton E) 
inside the fertilised patch and F) in unfertilised waters.

E.

0
10
20
30
40
50
60
70
80
90

100

D0 D2 D3 D4 D5 D7 D8 D11 D16 D19 D21
Days since first Fe-release

%
 o

f m
ic

ro
zo

op
la

nk
to

n 
bi

om
as

s

Aloricate ciliates Tintinnids
Athecate dinoflagellates Thecate dinoflagellates

F.

0
10
20
30
40
50
60
70
80
90

100

D1 D5 D9 D17 D21
Days since first Fe-release

Days since first Fe-release
0 2 4 6 8 10 12 14 16 18 20 22

Th
ec

at
e 

di
no

fla
ge

lle
te

s
(m

g 
C

 m
-2

)

0

100

200

300

400

500

600

700

800

D.
A

lo
ric

at
e 

ci
lia

te
s  

(m
g 

C
 m

-2
)

0
50

100
150
200
250
300
350
400

B.

Days since first Fe-release
0 2 4 6 8 10 12 14 16 18 20 22

Ti
nt

in
ni

d 
ci

lia
te

s 
(m

g 
C

 m
-2

)

0

30

60

90

120

150

C.


