Variations of the residual circulation in the Northern Hemispheric winter
A multiyear time series of the vortex-averaged diabatic descent for 47 Arctic winters from 1957/1958 until 2003/2004 is presented. The climatology of diabatic descent is based on trajectory calculations coupled with diabatic heating rate calculations carried out in the polar lower stratosphere of the Northern Hemisphere winters. We demonstrate the improved performance of the approach based on diabatic heating rates compared to the approach based on vertical winds from meteorological analysis. The time series of the vortex-averaged diabatic descent gives a detailed picture of intensity and altitude dependence of the stratospheric vertical transport processes during the Arctic winter. In addition to the overall vortex-averaged diabatic descent, the spatial structure of the descent is analyzed for two different Arctic winters. We demonstrate for this case study that not only the intensity but also the zonal structure of the diabatic descent depends on the meteorological conditions in the polar vortex. The climatology is characterized by very pronounced interannual variability which is linked to the variability of temperature anomalies and to the variability of Eliassen-Palm (EP)-flux anomalies, wherein strong planetary wave activity leads to strong diabatic descent and vice versa. The correlation between EP-flux and descent shows that tropospheric dynamics have a strong influence on the strength of the polar branch of the residual circulation by means of the atmospheric wave activity. Copyright 2008 by the American Geophysical Union.
Helmholtz Research Programs > MARCOPOLI (2004-2008) > MAR1-Decadal Variability and Global Change
Helmholtz Research Programs > MARCOPOLI (2004-2008) > POL-MARCOPOLI
Helmholtz Research Programs > MARCOPOLI (2004-2008) > POL1-Processes and interactions in the polar climate system