Sea Ice Deformation State From Synthetic Aperture Radar Imagery—Part II: Effects of Spatial Resolution and Noise Level


Contact
Wolfgang.Dierking [ at ] awi.de

Abstract

C- and L-band airborne synthetic aperture radar (SAR) imagery acquired at like- and cross-polarizations over sea ice under winter conditions is examined with the objective to study the discrimination between level ice and ice deformation features. High-resolution low-noise data were analyzed in the first paper. In this second paper, the main topics are the effects of spatial resolution and signal-to-noise ratio. Airborne high-resolution SAR scenes are used to generate a sequence of images with increasingly coarser spatial resolution from 5 to 25 m, keeping the number of looks constant. The signal-to-noise ratio is varied between typical noise levels for airborne imagery and satellite data. Areal fraction of deformed ice and average deformation distance are determined for each image product. At L-band, the retrieved values of the areal fraction get larger as the image resolution is degraded. The areal fraction at C-band remains constant. The retrieved average distance between deformation features increases both at C- and L-bands as the image resolution gets coarser. The influence of noise becomes noticeable if its level is equal or larger than the average intensity backscattered from the level ice. The retrieval of deformation parameters using simulated images that resemble ERS-2 SAR, Envisat ASAR, and ALOS PALSAR data products is discussed. Basic differences between real and simulated ERS-2 SAR images are analyzed. © 2006 IEEE.



Item Type
Article
Authors
Divisions
Programs
Publication Status
Published
Eprint ID
18306
DOI https://www.doi.org/10.1109/tgrs.2008.917267

Cite as
Dierking, W. and Dall, J. (2008): Sea Ice Deformation State From Synthetic Aperture Radar Imagery—Part II: Effects of Spatial Resolution and Noise Level , IEEE Transactions on Geoscience and Remote Sensing, 46 (8), pp. 2197-2207 . doi: https://www.doi.org/10.1109/tgrs.2008.917267


Share


Citation

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item