Arctic Total Water Vapor: Comparison of Regional Climate Simulations with Observations, and Simulated Decadal Trends
<jats:title>Abstract</jats:title> <jats:p>Satellite-retrieved data of total water vapor (TWV) over the Arctic are patchy, with large areas of missing data because of various limitations of the retrieval algorithms. To overcome these observational difficulties, a new retrieval algorithm has been developed that allows for monitoring the TWV over the Arctic during most of the year. This method retrieves TWV from satellite microwave radiometer data [the Advanced Microwave Sounding Unit B (AMSU-B)]. These new data have been made available for 4 yr (2000–03) and have been used to evaluate high-resolution simulations with the Arctic regional atmospheric climate model HIRHAM at daily, monthly, and seasonal time scales. The strong dynamic TWV variability on the daily time scale, linked with moisture transport by weather systems, is discussed for selected case studies. Both the simulated climatological seasonal mean patterns and the variability on interannual and decadal time scales are in agreement with those of the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data. Trends in Arctic TWV for 1958–2001, broken down by season, are presented. Although an increase in the TWV is obvious in all seasons, there are also regions where a decreasing trend appears. Significant maximum positive trends are calculated over the western Arctic in summer (up to 0.06 kg m−2 yr−1), and a significant small negative trend is calculated over the East Siberian Sea in winter.</jats:p>
Helmholtz Research Programs > MARCOPOLI (2004-2008) > POL1-Processes and interactions in the polar climate system