Tsunami simulations on several scales


Contact
Sven.Harig [ at ] awi.de

Abstract

The tsunami event generated by the great Sumatra-Andaman earthquake on 26 December 2004 was simulated with the recently developed model TsunAWI. The model is based on the finite element method, which allows for a very flexible discretization of the model domain. This is demonstrated by a triangulation of the whole Indian Ocean with a resolution of about 14 km in the deep ocean but a considerably higher resolution of about 500 m in the coastal area. A special focus is put on the Banda Aceh region in the Northern tip of Sumatra. This area was heavily hit by the tsunami and the highest resolution in this area is about 40 m in order to include inundation processes in the model simulation. We compare model results to tide gauge data from all around the Indian Ocean, to satellite altimetry, and field measurements of flow depth in selected locations of the Aceh region. Furthermore, we compare the model results of TsunAWI to the results of a nested grid model (TUNAMI-N3) with the same initial conditions and identical bathymetry and topography in the Aceh region. It turns out that TsunAWI gives accurate estimates of arrival times in distant locations and in the same mesh gives good inundation results when compared to field measurements and nested grid results. © 2008 Springer-Verlag.



Item Type
Article
Authors
Divisions
Programs
Publication Status
Published
Eprint ID
19748
DOI https://www.doi.org/10.1007/s10236-008-0162-5

Cite as
Harig, S. , Chaeroni, , Pranowo, W. S. and Behrens, J. (2008): Tsunami simulations on several scales , Ocean Dynamics, 58 (5-6), pp. 429-440 . doi: https://www.doi.org/10.1007/s10236-008-0162-5


Share


Citation

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item