On solving the momentum equations of dynamic sea ice models with implicit solvers and the elastic–viscous–plastic technique
Experiments with idealized geometry are used to compare model solutions of implicit VP- and explicit EVP-solvers in two very different ice-ocean codes: the regular-grid, finite-volume Massachusetts Institute of Technology general circulation model (MITgcm) and the Alfred Wegener Institute Finite Element Ocean Model (FEOM). It is demonstrated that for both codes the obtained solutions of implicit VP-and EVP-solvers can differ significantly, because the EVP solutions tend to have smaller ice viscosities (" weaker" ice). EVP solutions tend to converge only slowly to implicit VP solutions for very small sub-cycling time steps. Variable resolution in the unstructured-grid model FEOM also affects the solution as smaller grid cell size leads to smaller viscosity in EVP solutions. Models with implicit VP-solvers can block narrow straits under certain conditions, while EVP-models are found to always allow flow as a consequence of lower viscosities. © 2011 Elsevier Ltd.
Helmholtz Research Programs > PACES I (2009-2013) > TOPIC 1: The Changing Arctic and Antarctic > WP 1.4: Antarctic Circumpolar Climate and Ecosystem Study
Helmholtz Research Programs > PACES I (2009-2013) > TOPIC 4: Synthesis: The Earth System from a Polar Perspective
Helmholtz Research Programs > PACES I (2009-2013) > TOPIC 4: Synthesis: The Earth System from a Polar Perspective > WP 4.1: Current and Future Changes of the Earth System