Acoustic ecology of Antarctic pinnipeds
In aquatic-mating pinnipeds, acoustic communication plays an important role in male competition and mate attraction. Vocal repertoire size and composition during the breeding season varies between species and is presumed to be a product of interspecific differences in sexual selection. In this study, we examine seasonal and diel patterns in acoustic repertoire size, composition and call activity of 4 Antarctic pinniped species: Weddell seal Leptonychotes weddellii, leopard seal Hydrurga leptonyx, Ross seal Ommatophoca rossii and crabeater seal Lobodon carcinophaga. An 11 mo (Jan 2006 - Jan 2007, no recordings Jul and Nov 2006) near-continuous dataset was collected from the Perennial Acoustic Observatory in the Antarctic Ocean (PALAOA) located on the Ekström Iceshelf. The Weddell seal vocal repertoire consisted of 14 call types. Calls were present throughout the year except in February (11 mo), while repertoire composition varied considerably between months. The leopard seal vocal repertoire consisted of 7 call types. Calls were present between October and January (4 mo). All call types were used in a uniform manner throughout the entire call period. The Ross seal vocal repertoire consisted of 5 call types. Ross seal vocalizations were present from December until February (3 mo). Repertoire composition varied little between months. Crabeater seals produced one vocalization type, present from August to December (5 mo). Vocalizations in these species are likely produced in a breeding context. Inter-specific differences in behavioral ecology and interactions with abiotic and biotic environmental factors shape vocal behavior resulting in each species filling its own acoustic ecological niche. © Inter-Research 2010.
AWI Organizations > Climate Sciences > Physical Oceanography of the Polar Seas
Helmholtz Research Programs > PACES I (2009-2013) > TOPIC 1: The Changing Arctic and Antarctic > WP 1.6: Ocean Warming and Acidification: Organisms and their changing Role in Marine Ecosystems