Using automatic differentiation to optimize parameters of shallow water models in tidal applications

Silvia Maßmann, Alexey Androsov, Sergey Danilov, Sven Harig, Martin Losch, Jens Schröter

Alfred-Wegener-Institut, Bremerhaven, Germany

The Eight International Workshop on Unstructured Mesh Numerical Modelling of Coastal, Shelf & Ocean Flows Louvain-la-Neuve, 16-18 September 2009

Outline

Goal: Unstructured tidal model with inverse estimation of parameters; adjoint model generation via automatic differentiation

Model status

Adjoint models and automatic differentiation

Results

Conclusions/Outlook

Status of regional 2D tidal models

- \blacktriangleright Shallow water equations
- \blacktriangleright Triangular, unstructured meshes
- \blacktriangleright FV or FE with P_1^{NC} P_1 or P_1 P_1 discretization
- \blacktriangleright Different time-stepping schemes
- \blacktriangleright Inclusion of tidal potential
- \triangleright Wetting & drying
- \triangleright Clamped or Flather open boundary condition

Tuning of parameters:

- ► Bottom friction coefficient $(rH^{-1}|\mathbf{u}|\mathbf{u})$
- \blacktriangleright Depth
- \triangleright Open boundary values

Adjusting parameters manually is time consuming as the number of unknowns is large.

 \rightarrow Inverse methods recontruct from the misfit between model results and observations the correct parameters.

Adjoint model

We minimize a cost function, which is calculated after each tidal cycle:

$$
J = \sum_{m=1}^{M} \left[\left(B_m^{obs} - B_m^{mod} \right)^2 + \left(D_m^{obs} - D_m^{mod} \right)^2 \right] s_p
$$

+
$$
\sum_{n=1}^{N} \left[\left(\ln \left(\frac{r_n}{2.6 \cdot 10^{-3}} \right) \right)^2 s_c
$$

+
$$
\left(\frac{1}{\exp(H_n - A_n^{mod} - 1)} \right)^6 s_h \right]
$$

B resp D are the real resp imaginary part of the oscillations. A is the amplitude. r is the bottom friction coefficient. H is the depth. s_p, s_c and s_h are scaling coefficients. M is the number of measurement points. N is the number of nodes.

... are a kind of regularization. It restricts the bottom friction parameter close to some initial guess and the bottom topography to stay in a range such that the depth is always positive.

Automatic differentiation ...

... is a technology for automatically adding statements for the computation of derivatives to computer programs. www.autodiff.org Advantages:

- \triangleright Derivatives are accurate (contrary to FD methods)
- \triangleright Adjoint model of the discretized equations
- \triangleright Automatically generated adjoint models are easier to maintain
- \triangleright Computation of Hessian for optimization algorithms is also possible
- \blacktriangleright Free software exists (TAMC, Tapenade, OpenAD,...)

Test setup

The adjoint model is generated of the explicit non-conforming FE code using TAMC.

(clamped boundary condition, no wetting and drying, minimal depth of 10m, no potential, only M_2 tidal forcing)

The scheme is tested on a very coarse mesh of the Northand Baltic Sea with only 7078 nodes. The cost function computes the misfit to 93 tidal gauges.

Initial gradient of the cost function

Reduction of error (optimized bottom topography and friction)

Optimized depth with respect to tide gauges

- \triangleright Model is more sensitive to changes in open boundary values than to bottom friction and depth.
- \triangleright Error reduction in more than two thirds of the stations.
- \triangleright Optimized depth is consistent with our expectation.

Outlook

- \triangleright Compare different AD tools to identify the most efficient
- \blacktriangleright Include wetting & drying
- \triangleright Analyse the model dependencies to increase computational efficiency of the adjoint model
- \triangleright Reduce initial error by taking better bathymetry and finer resolving mesh
- \triangleright Optimize parameters for M_2 overtide simulation

