Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial – a multi-proxy, dual-site approach comparing terrestrial and aquatic signals
A sediment core from a closed basin lake (Lake Kuhai) from the semi-arid northeastern Tibetan Plateau was analysed for its pollen record to infer Lateglacial and post glacial vegetation and climatic change. At Lake Kuhai five major vegetation and climate shifts could be identified: (1) a change from cold and dry to relatively warmer and more moist conditions at 14.8 cal ka BP; (2) a shift to conditions of higher effective moisture and a stepwise warmer climate at 13.6 cal ka BP; (3) a further shift with increased moisture but colder conditions at 7.0 cal ka BP; (4) a return to a significantly colder and drier phase at 6.3 cal ka BP; (5) and a change back to relatively moist conditions at 2.2 cal ka BP. To investigate the response of lake ecosystems to climatic changes, statistical comparisons were made between the Lake Kuhai pollen record and a formerly published ostracod and sedimentary record from the same sediment core. Furthermore, the pollen and lacustrine proxies from Lake Kuhai were compared to a previously published pollen and lacustrine record from the nearby Lake Koucha. Statistical comparisons were done using non-metric multidimensional scaling and Procrustes rotation. Differences between lacustrine and pollen responses within one site could be identified, suggesting that lacustrine proxies are partly influenced by in-lake or local catchment processes, whereas the terrestrial (pollen) proxy shows a regional climate signal. Furthermore, we found regional differences in proxy response between Lake Kuhai and Lake Koucha. Both pollen records reacted in similar ways to major environmental changes, with minor differences in the timing and magnitude of these changes. The lacustrine records were very similar in their timing and magnitude of response to environmental changes; however, the nature of change was at times very distinct. To place the current study in the context of Holocene moisture evolution across the Tibetan Plateau, we applied a five-scale moisture index and average link clustering to all available continuous palaeo-climate records from the Tibetan Plateau to possibly find general patterns of moisture evolution on the Plateau. However, no common regional pattern of moisture evolution during the Holocene could be detected. We assign this to complex responses of different proxies to environmental and atmospheric changes in an already very heterogeneous mountain landscape where minor differences in elevation can cause strong variation in microenvironments. © 2010 Elsevier Ltd.
Helmholtz Research Programs > PACES I (2009-2013) > TOPIC 3: Lessons from the Past > WP 3.1: Past Polar Climate and inter-hemispheric Coupling