Wind-triggered events of phytoplankton downward flux in the Northeast Water Polynya
Phytoplankton carbon fluxes were studied in the Northeast Water (NEW) Polynya, off the eastern coast of Greenland (79° to 81°N, 6° to 17°W), during summer 1993. The downward flux of organic particles was determined during 54 days using a sediment trap moored at a fixed location, below the pycnocline (130 m). The hypothesis of the present study is that wind events were ultimately responsible for the events of diatoms downward flux recorded in the trap. Wind conditions can influence the vertical transport of phytoplankton by affecting (1) the environmental conditions (e.g. hydrostatic pressure, nutrient concentrations, and irradiance) encountered by phytoplankton during their vertical excursion, and (2) the aggregation and disaggregation of phytoplankton flocs. The first mechanism affects the physiological regulation of buoyancy, whereas the second one affects the size and shape of settling particles. Using field data (wind velocity, density profiles and phytoplankton abundance), we assessed the potential aggregation and the vertical excursion of phytoplankton in surface waters. The results show that, upstream from the trap, wind and hydrodynamic conditions were sometimes favourable to the downward export of phytoplankton. Lag-correlation between time series of wind and phytoplankton downward flux shows that flux events lagged wind events by ca. 16 days. Given that the average current velocity in the top 100 m was ca. 10 cm s-1, a lag of 16 days corresponded to a lateral transport of ca. 130 km, upstream from the sediment trap, where phytoplankton production was lower than at the location of the trap. According to that scenario, 21% to 60% of primary production was exported to depth during wind events. If we had assumed instead a fight spatial coupling between the material collected in the trap and the relatively high phytoplankton production at the location of the trap, we would have concluded that < 7% of primary production was exported to depth. The difference between the two scenarios has great implications for the fate of phytoplankton. Our results stress the importance of investigating the spatial coupling between surface and trap data before assessing the pathways of phytoplankton carbon cycling. © 2002 Elsevier Science B.V. All rights reserved.
AWI Organizations > Infrastructure > Operations and Research Platforms
AWI Organizations > Climate Sciences > Physical Oceanography of the Polar Seas
AWI Organizations > Climate Sciences > Climate Dynamics
AWI Organizations > Climate Sciences > Sea Ice Physics