A regulated localization method for ensemble-based Kalman filters
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Introduction Effective localization of the Kalman gain
Localization is essential for data assimilation with Previous studies [1-4] found that CL and OL are not equiv- The effective localization length scale in the Kalman gain
ensemble-based Kalman filters in large-scale systems. alent. However, Iif the observations have only a small in- Is different for both methods. It depends on the relative
Two localization methods are commonly used: Covari- fluence the difference induced by the localization methods size of the estimated state error variance (P) and obser-
ance localization (CL) and domain localization (DL). The Is small. If the influence of the observations is larger, OL vation error variance Gé as Is shown in figure (1). If the
former applies a localizing weight to the forecast covari- requires a smaller localization length scale and, still, can observation error Is particularly small, the effective local-
ance matrix while the latter splits the assimilation into lead to inferior assimilation results than using CL. Ization length in OL will be much larger than that of CL.
local regions in which mde.pender?t a§3|mllat|on updates The published findings can be explained by considering To obtain an identical effective localization length scale In
are perfgrmed. '.I'he.domaln Iocallzatlon_ 's usually Com_' the effect of the localization on the Kalman gain. Follow- OL, a distinct weight function w°-R is required. It can be
bined W'th_ a weighting of the F)bservat_lon .error covarl- Ing [1], the gain for CL is in case of a single observation: derived by equating both of the gain equations shown in
ance matrix, denoted observation localization (OL). OL KCL _ _ we  pfpT the left column. The calculation leads to the regulated |o-
results in c’.i S|m|_lar localization effe(_:t to that of covari- o HPHT +0% calization function
ance localized filters. In order to improve the perfor- For OL the gain is Is: el -1
mance of domain localization with weighting of the ob- KO = WOLH"‘P’OHLT+0%P‘cHT wWOLR = HPHTCTG% (1 |\_/|\|F:)|_I|_|TF_)|_HO-%)
servation errors, a regulated localization scheme s in- Here, WCt and wPL are the localization functions appliedin ~ The function is always narrower than the weight function
troduced.  Using twin experiments with the Lorenz-96 the CL and OL methods. For CL the localization function  WCh. It avoids the widening of the effective localization
model, it is demonstrated that the regulated localization is a simple factor in the gain. This is not the case for OL. length scale for small observation errors.
can lead to a significant reduction of the estimation er-
rors as well as increased stability of the assimilation pro- o | | | | o .
cess. In addition, the numerical experiments point out 02=10 02=1 02=0.1
that the combination of covariance localization with a se- o | o _
rial processing of observations during the analysis step %0-06' %0-3 %0-6
can destabilize the assimilation process. Eo.m- Eo.z 30.4-

qJ0.02- wOl qJ0.2
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Twin experiments are conducted using the Lorenz-96 Figure 1:. Effective Iocali.zation funct_ions In tr21e Kalman for OL with regulatgd Iocgliza?tion.. (plue): V_Veightir.lg term
model [7] implemented in the Parallel Data Assimilation gain for d.lfferent observation error \{arlances Or and state for OL. The effe(.:tlvg weighting Is rncregsmgly wider for
Framework (PDAF. http://pdaf.awi.de). The ensemble error variance 1. (red): Weighting term for CL and observation localization for decreasing Og.
has a size of 10 members. The localization functions
Wk WO are chosen to be 5th-order polynomials mim- |mpact of regu|ated localization
iIcking a Gaussian function, but having compact support.
LSEIK-fix, obs. error=0.1 Figure 2: Time-mean

In the experiments, the support radius and the forgetting LSEIK=fix, obs. error=1.0 LSEIR=fix, obs. error=0.5 o
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factor (covariance inflation) is varied. For each pair 08 035 s RMS errors averaged over
of these parameters 10 experiments are conducted % 03 . [ 0025 each 10 experiments.
using different random numbers to generate the initial £ 096 o £ Gin  Eoss Y o
. £ 0235 L 0135 00225 The regulated localization
ensemble from a long state trajectory. The performance S, 0.94 0225 § 0125 5094 0.0215 .
o . . . 2 02 5 012 5 oozt (LSEIK-reg) results in a
of the assimilation experiments is assessed using the 0.02 o a1 092 002 . g .
. . 0.205 0.105 o095 Significant reduction of
time-mean RMS deviations from the true state that was oo 02 s og 0019
dt te th b ti 2 6 10 14 18 22 26 30 3 018 2 6 10 14 18 22 26 30 34 O 2 6 10 14 18 22 26 30 34 0018 the errors Compared to
Use O genera € € observations. support radius support radius support radius ﬁxed'OL (LSE'K'le) in
FOUf Combinations Of ﬁlter algorithms and Iocalization LSEIK-reg, obs. error=1.0 LSEIK-reg, obs. error=0.5 LSEIK-reg, obs. error=0.1 partiCUIar for Sma” Obser'
methods are compared: 1 08 vation errors. In addition,
e LSEIK-fix: Local SEIK filter [5] using fixed OL 0! L the  parameter  region
' ) S 0.25 e ke i Ty "
| | & oos o2 8 g with minimum errors is
e LSEIK-reg: Local SEIK filter using regulated OL. = 0235 £ = increased.
5 0-94 0225 S
_ 5 022 5 5
o EnKF-sqgrt: Square-root formulation of Ensemble 052 0.215 The EnKF-sqrt method
Kalman filter (following [2]) using CL. %55
1 1 1 > 2 6 10 14 18 34 06'11995 2 6 10 14 18 22 26 30 34 ' 2 6 10 14 18 22 30 34 ' ShOWS errors that are Ve ry
‘ EnSRF: Ensem Ole Square'rOOt fllter Wlth Sequentlal Support radius Support radius Support radius . '| t th bt . d
. . . similar to those obtaine
processing of observations [6] using CL. o
EnKF-sqrt, obs. error=1.0 EnKF-sqrt, obs. error=0.5 EnKF-sqrt, obs. error=0.1 Wit LSEI K_reg' HOW-

os ever, EnKF-sgrt diverges
oos In case of the smallest
o4 observation errors for long
00225 |ocalization radii. Here,
o021 |LSEIK-reg is still stable.
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Conclusion
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e OL results in a longer effective localization length
scale compared to CL. The length scale increases
for more accurate observations.
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e A regulated localization function for OL has been In- DT Weis oo oass  The ENSRF Is less stable
. . . . . 2 6 10 14 18 22 26 30 34 ' 2 6 10 14 18 22 26 30 34 ' 2 6 10 14 18 22 26 30 34 .
troduced. For a single observation, it results in iden- support radius support radius support radius with larger errors com-

tical effective localizations for CL and OL. pared to LSEIK-reg and
EnSRF, obs. error=1.0 EnSRF, obs. error=0.5 EnSRF, obs. error=0.1 _ _
EnKF-sgrt. This behavior

IS caused by the combina-
tion of CL with sequential
processing of observa-
tions, which renders the
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e Numerical experiments show a significant improve- 1
ment of the assimilation performance with regulated
localization for small observation errors.

e The EnSRF method with CL showed an inferior as-
similation performance. It is caused by the combi-

. . . . update equation of the
nation of CL with sequential processing of observa- P , d ,
. NN N - covariance matrix to be
tions. 2 6 10 14 18 22 26 30 34 ' 2 6 10 14 18 22 26 30 34 ' 2 6 10 14 18 22 26 30 34
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