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Summary 1 

Summary 

The introduction focuses on the gas exchange, a primary function of blood in vertebrates. 

Since most of our knowledge On blood functions originates from marnrnals, important 

differences between haematology in fishes and marnmals are outlined. Extensive studies on 

environmental adaptations in the respiratory system of fishes are briefly summarized. Empha- 

sis is placed on the mode of life of fishes and its reflection in various haematological 

parameters. 

Hydrographical isolation and constant low temperatures have led to a high degree of steno- 

thermy and endemism in the Antarctic fish fauna. Consequently, a variety of adaptations in 

the oxygen transport system of these fishes to their environment has been developed. 

Although blood of Antarctic fishes was of particular interest after the detection of haemoglo- 

binless fish, no data are available for characteristic species, dominating the fish fauna in 

high-Antarctic waters. Our present knowledge on the blood physiology of Antarctic fishes is 

actually based on only few species. So far, it has not been med to relate the ecology of a 

large range of different Antarctic fish species to their haematology in combination with 

structural and functional studies on their haemoglobins. Therefore, a detailed study of blood 

parameters and haemoglobins of Weddell Sea fishes was initiated. For most of the species it 

is the first record of haematology and haemoglobin properties. Special attention is paid to 

the mode of life and the evolution of these teleosts in relation to their habitat, in an attempt 

to find links with haematological characteristics. 

Blood samples from 29 species of 20 genera and 6 families from the eastem and southeastern 

Weddell Sea were taken during 'Polarstern' expedition EPOS leg 3. Methods for the mea- 

surement of haematological parameters are briefly described. Investigated parameters com- 

prise: pH, partial pressure of oxygen and carbon dioxide (PO,, PCO,), number of erythrocytes 

(RBC), haematocrit (Hct), haemoglobin content (Hb), mean corpuscular Hb concentration 

(MCHC), mean cellular Hb (MCH), oxygen carrying capacity (02CC) and plasma conmbu- 

tion (PC). 

Structural and functional studies were carried out on haemolysates, including electrophoretical 

detection of Hb components, spectrophotometrical investigations of Root and Bohr effects, 

Pjo estimation (the oxygen partial pressure required to achieve half-saturation) and complete 

sequencing of the a and Ã chain of selected haemoglobins. 
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The results indicate on one hand a certain uniformity of blood Parameters following the 

general trend of reduction of haematocrit, red blood cells and haemoglobin in all endemic 

fish species in Antarctica. When average values for haemoglobin content and red blood cell 

Count for different farnilies are compared, we find a decrease in the order Nototheniidae, 

Artedidraconidae, Bathydraconidae, Channichthyidae. It is concluded that this finding reflects 

the phylogeny of endemic Antarctic fish families. 

The presence of distinct Bohr effects in most of the investigated species indicates a fine 

regulation of oxygen supply to the tissues. Active or moderately active species such as Disso- 

stichus mawsoni or Trernatomus eulepidotus were found to have a strong Bohr effect. Their 

Bohr coefficients were calculated to be close to -1. It is concluded that species which have 

only weak Bohr effects (e.g. Aethotaxis mitopteryx) have a limited scope of activity. High 

oxygen affinity of haemoglobin (i.e. low Pro value) was only found in active or moderately 

active species (D. rnawsoni, Pagorhenia hansoni). 

The general absence of multiple haemoglobins is unusual in comparison with species from 

temperate areas and may reflect the stable physico-chemical conditions of high-Antarctic 

seas. Only in Pleuragramrna antarcticum two haemoglobins in higher amounts were found. 

On the other hand we find certain species with clear differences in their blood physiology, 

assigned to their mode of life and activity Pattern. This is demonstrated in detail for 

Aethotaxis mitopteryx, a species with pelagic/benthopelagic and sluggish mode of life and for 

Bathydraco marri, a benthic species with large scope of activity. A. mitopteryx seems to have 

a poorly developed oxygen transport System, since all haematological characteristics were 

found to be low. Similar low values were measured in P. antarcticum, a fully pelagic species, 

repeatedly reported to be sluggish. More active species such as D. mawsoni or T .  eulepidotus 

are characterized by significantly higher haematological values. 

General conclusions about endemic Antarctic fish families are drawn with particular reference 

to links between evolution, physiological adaptations and abiotic preferences. The haemato- 

logy of bathydraconids corresponds both to their preference for deep and cold areas and their 

taxonomic position, just below the channichthyids. Nototheniids, a family with great variation 

in morphology and mode of life, is assumed to be in a process of speciation. This is well 

reflected in a higher variance of haematological values, as compared to other endemic 

families. In this respect the exceptional role of haemoglobinless fishes is considered and the 

necessity for the red-blooded fishes to possess haemoglobin is discussed. 

In a final remark it is suggested that environmental conditions in Antarctic waters have 

favoured the development of fishes with low activity level. This energy-saving 'strategy' is 

even followed by pelagic species. 
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Zusammenfassung 

Die Einleitung konzentriert sich auf den Gasaustausch, eine der Hauptaufgaben von Blut in  

Vertebraten. Wichtige Unterschiede in der HÃ¤matologi von SÃ¤uger und Fischen werden 
herausgestellt, da unsere Kenntnisse uber Blutfunktionen hauptsÃ¤chlic an SÃ¤uger gewonnen 
wurden. Eine kurze Zusammenfassung zahlreicher, ausfÃ¼hrliche Studien Ã¼be Fischatmungs- 
mechanismen und ihre Anpassungen an die Umwelt schlieÃŸ sich an. Dabei werden ver- 
schiedene Lebensweisen und ihre Widerspiegelung in hÃ¤matologische Parametern in den 
Vordergrund gestellt. 

Hydrographische Isolation und konstant niedrige Temperaturen brachten eine Fischfauna 
hervor, die charakterisiert ist durch viele endemische und stenotherme Arten. Ferner 
entwickelten diese Fische eine Reihe von Anpassungen ihres Sauerstofftransportes an die 
Umgebung. 

Das Blut antarktischer Fische war nach der Entdeckung von Fischen ohne HÃ¤moglobi von 
besonderem Interesse. Dennoch sind kaum Daten vorhanden uber Fischarten, die die hochant- 
arktische Shelfmeerfauna dominieren. Unser heutiges Wissen Ã¼be die Blutphysiologie 
antarktischer Fische stÃ¼tz sich insgesamt nur auf wenige Arten. Dabei wurde bisher noch 
nicht versucht, die Ã–kologi einer Reihe mÃ¶glichs verschiedener antarktischer Arten in 
Bezug zu ihrer HÃ¤matologi unter gleichzeitiger BerÃ¼cksichtigun der Struktur und Funktion 
ihrer HÃ¤moglobin zu setzen. 
Deshalb wurde eine detaillierte Studie an Blut und HÃ¤moglobi von Fischen des Weddell- 
meeres durchgefÃ¼hrt Die meisten Arten der vorliegenden Arbeit werden zum ersten Mal 
hinsichtlich ihrer HÃ¤matologi und HÃ¤moglobin untersucht. Im Vordergrund stehen dabei die 
Lebensweise und Evolution dieser Teleostier in Beziehung zu ihrem Habitat sowie die 
Verbindung mit hÃ¤matologische Parametern. 

WÃ¤hren der "Polarstern" Expedition EPOS Leg 3 wurden irn Ã¶stliche und sÃ¼dÃ¶stlich 
Weddellmeer Blutproben von 29 Arten aus 20 Gattungen und sechs Familien genommen. Die 
Methoden zur Messung hÃ¤matologische Parameter werden kurz beschrieben. Die folgenden 
Parameter wurden untersucht: pH, Sauerstoff- und Kohlendioxyd-Partialdruck (PO;,, PCO*), 
Anzahl der Erythrocyten (RBC), HÃ¤matokri (Hct), HÃ¤moglobingehal (Hb), mittlere kor- 
puskulÃ¤r HÃ¤moglobinkonzentratio (MCHC), mittlerer zellulÃ¤re HÃ¤moglobingehal (MCH), 
SauerstofftransportkapaziÃ¤ (02CC) und Plasmabeitrag (PC). 

An HÃ¤molysate wurden Untersuchungen zur Struktur und Funktion von HÃ¤moglobi 
durchgefÃ¼hrt Sie schlieÃŸe den elektrophoretischen Nachweis der HÃ¤moglobinkomponenten 
die spek~ophotometrische Untersuchung von Root und Bohr Effekt, die Bestimmung des P5(, 
(der Sauerstoffpartialdruck, der nÃ¶ti ist um 50% SÃ¤ttigun zu erreichen) sowie die komplette 
Sequenzierung der a- und Â§-Kette ausgewÃ¤hlte HÃ¤moglobin ein. 
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Einerseits zeigen die Ergebnisse eine gewisse Einheitlichkeit der Blutparameter. Sie folgen 
dem allgemeinen Trend der Reduzierung von HÃ¤matokrit Erythrocyten und HÃ¤moglobinge 
halt, welcher in allen endemischen Fischarten der Antarktis vorhanden ist. Ein Vergleich der 

HÃ¤moglobinkonzentratione und Anzahl der Erythrocyten in verschiedenen Familien, fÃ¼hr 

zu einer Abnahme der Werte in der Reihenfolge Nototheniidae, Artedidraconidae, Bathy- 
draconidae und Channichthyidae. Dies wird als Widerspiegelung der Phylogenie endemischer 

antarktischer Fischfamilien gedeutet. 

AusgeprÃ¤gt Bohr Effekte in den meisten der untersuchten Arten deuten auf eine feine 
Regulation der Sauerstoffversorgung der Gewebe. HÃ¤moglobin aktiver oder mÃ¤ÃŸ aktiver 
Arten haben alle einen starken Bohr Effekt, mit Bohrkoeffizienten nahe -1. Daraus wird 

abgeleitet, daÂ Arten mit schwachem Bohr Effekt (2.B. Aethotaxis mitoptetyx) nur einen 
eingeschrÃ¤nkte Spielraum fÃ¼ AktivitÃ¤ haben. Eine hohe SauerstoffaffinitÃ¤ (also niedriger 

P<,,) konnte nur in aktiven oder mÃ¤ÃŸ aktiven Arten festgestellt werden (D. mawsoni, 
Pagothenia hansoni). Das Fehlen multipler HÃ¤moglobinkomponente ist im Vergleich zu 
Arten gemÃ¤ÃŸigt und tropischer Breiten ungewÃ¶hnlich Es wird als mÃ¶gliche Ausdruck der 

stabilen physiko-chemischen Umgebung gedeutet. Nur in Pleuragramma antarcticum wurden 
zwei HÃ¤moglobin in grÃ¶ÃŸer Mengen gefunden. 

Andererseits finden wir Arten mit deutlichen Unterschieden in ihrer Blutphysiologie, die auf 
verschiedene Lebensweise und AktivitÃ¤ zurÃ¼ckfÃ¼hrb sind. Dies wird ausfÃ¼hrlic gezeigt am 

Beispiel von Aethotaxis mitopteryx, einer An mit pelagischer/benthopelagischer und trÃ¤ge 

Lebensweise sowie am Beispiel von Bathydraco marri, einer Art mit benthischer Lebens- 

weise und groÃŸe AktivitÃ¤tsspielraum A. mitopteryx scheint ein schwach entwickeltes 
Sauerstofftransportsystem zu haben, da alle hÃ¤matologische Parameter niedrig sind. Ã„hnlic 

niedrige Werte wurden bei P. antarcticum gefunden, einer Art, die trotz ausschlieÃŸlic pela- 

gischer Lebensweise hÃ¤ufige als trÃ¤g charakterisiert wurde. Die aktiveren Arten (z.B. D. 
mawsoni und T.  eulepidotus) zeichnen sich durch deutlich hÃ¶her hÃ¤matologisch Werte aus. 

Allgemeine Betrachtungen und SchluÃŸfolgerunge Ã¼be antarktische Fischfamilien schlieÃŸe 

sich an. Dabei stehen Verbindungen zwischen Evolution, physiologischen Anpassungen und 
abiotischen PrÃ¤ferenze im Vordergrund. Die HÃ¤matologi der Bathydraconiden steht im 

Einklang sowohl mit ihrer Vorliebe fÃ¼ kalte und tiefe Gebiete als auch mit ihrer taxonomi- 

schen Stellung nahe den Channichthyiden. Die Nototheniiden sind eine Familie mit erstaun- 
licher Vielfalt bezÃ¼glic ihrer Morphologie und Lebensweise. Dies zeigt sich auch in einer, 

im Vergleich mit anderen endemischen Familien, hohen Varianz fast aller hÃ¤matologische 

Parameter. In diesem Zusammenhang wird die besondere Stellung der Eisfische betrachtet 

und die Notwendigkeit des Besitzes von HÃ¤moglobi diskutiert. 

Eine SchluÃŸbemerkun zeigt auf, daÂ die Umweltbedingungen antarktischer Meere offensicht- 

lich die Entwicklung von trÃ¤gere Fischen begÃ¼nstig haben. Diese energiesparende 'Strate- 

gie' ist auch bei pelagischen Arten verwirklicht. 
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Introduction 

BLOOD FUNCTIONS 

'Blood is a very speciai liquid" (Goethe 1808). In the early 19th century blood had still a 

rather mystical meaning and Goethe could not know yet that his Statement would once be 'to 

the point'. Due to the ornnipresence of blood in a body it is an excellent carrier of informa- 

tion about nearly all metabolic processes. Therefore, extensive haematological investigations 

are nowadays routine procedures in clinical methodology. Blood has many different func- 

tions. According to Schrnidt-Nielsen (1986) these are: transport of nutrients, metabolites, 

excretory products, gases, hormones and cells; heat exchange; transmission of force; coagula- 

tion; immune response and homeostasis. Obviously, the majority of these functions could be 

carried out by any aqueous medium. One of the primary functions of blood however, the gas 

exchange, is associated with highly complex biochernical properties of the blood components, 

at least in vertebrates. The transport of oxygen via haemoglobin, which is concentrated in red 

blood cells, is regarded as characteristic for vertebrates in zoophysiological textbooks 

(Penzlin 1980; Ecken 1986; Schmidt-Nielsen 1986). The size and shape of these cells, 

however, can vary markedly (Fig. 1.1). 

Gas exchange Covers oxygen delivery to the tissues, as well as carbon dioxide disposal from 

the tissues. The arnount of oxygen transported by unit volume of blood depends On the partial 

pressure of 0, in the blood, on the number of red blood cells per unit volume, on the amount 

of functional haemoglobin in the red cells and on the oxygen affinity of the haemoglobin(s). 

Carbon dioxide can be transported as molecular CO,, bicarbonate, carbonate and carbarnino 

compounds and red blood cells play a particular role in facilitating this transport. 

FISH BLOOD 

Most of our knowledge on haematology, oxygen transport and haemoglobins (Hb's) has been 

derived from research On marnmals, particularly humans. When fish blood is investigated, 

there are a few important differentes to be kept in rnind for the interpretation of results. 

Fish erythrocytes are nucleated and therefore more resistant to shear-induced shape changes 

(i.e. when flowing) than mamrnalian cells (Nikinmaa 1990). As a consequence a decrease in 

viscosity with increasing flow rate can be observed. Organic phosphates found in fish 

erythrocytes are mainly ATP and GTP in contrast to 2,3 DPG (diphosphoglycerate) in 
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mammals. In addition the red cells of some fish species contain UTP (uridosintriphosphate), 

IDP (inositoldiphosphate) and P P  (inositolpentaphospate). 

Fig. 1.1: Shape and size of some vertebrate red blood cells from fish, amphibians, 
reptiles, birds and mammals (from Nikinrnaa 1990, modified). 

Haematological adaptations 

The respiratory System of fishes, and particularly their haemoglobins, constitute excellent 

models for studies on environmental adaptations (Powers 1980). These adaptations can be on 

rnorphological, physiological or molecular level. Most fish species regulate certain haemato- 

logical Parameters according to environmental conditions (Val et al. 1990). Studies on their 

erythrocytes are of great interest, particularly when correlated with activity and general 

ecology (Coburn & Fischer 1973). Erythrocytes of active fish species were found to be 

smaller and their viscosity was less shear-dependent (Wells & Baldwin 1990) in comparison 

to other species. The cells of active, tropical fishes were more densely packed with Hb 

(Wells & Baldwin 1990) and had more total Hb due to an increased number of red blood 

cells (Putnarn & Freel 1978) than less active species. A positive correlation between 

haematocrit, total haemoglobin, total plasma proteins and activity was found in a number of 

temperate fishes (Larsson et al. 1976). 
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Multiple components 

Many fishes have several haemoglobins, which can occur in quite different amounts. Active 

pelagic swimmers have multiple components with distinctly different functional properties, 

which guarantee sufficient oxygen supply to the tissues even under severe acidic conditions 

(Riggs 1970). Migrating species, such as eel and trout possess a Set of functionally different 

Hb's and the appropriate one is synthesized On demand (Love 1980). Therefore Hb multiplic- 

ity has been regarded as an important adaptive strategy for fish to varying environmental 

conditions andlor changing metabolic requirements (Riggs 1970). In spite of this, there is no 

clear relation between the number of haemoglobin fractions and environmental stability (Val 

et al. 1990). 

Respiratory properties of blood, especially the oxygen carrying capacity and the oxygen 

affinity respond to evolutionary selective pressure (Wells et al. 1989). In fishes we find 

special adaptations, which fit for a particular mode of life in a particular environment. The 

properties of fish haemoglobins reflect adaptations not only to the metabolic rate, but also to 

the prevailing external oxygen pressure (Riggs 1970). Active, pelagic fishes, for example, 

living in well-oxygenated waters, tend to have oxygen equilibria favouring unloading of 

oxygen to the tissues (Wells et al. 1989), i.e. their Hb's have a low 02-affinity. Furthermore 

active fishes usually have Hb's with larger Bohr effects (see below). Sluggish, benthic fishes 

tend to have equilibria favouring oxygen uptake at the giils, which results in high oxygen 

affmities. The same applies to fishes living in oxygen-poor habitats (e.g. in Amazonian 

rivers), where in addition to high oxygen affinities facultative air-breathing was developed 

(Powers 1980). 

Haemoglobin structure und function 

Haemoglobin structure is an indispensable model for almost all fields of biochemistry, 

ranging from protein folding studies to molecular evolution. The analysis of the primary 

structure (arnino acid sequence, AAS) reveals the evolutionary development of a molecule. 

The AAS causes a d e f i e d  secondary and tertiary structure and is therefore responsible for 

the functional behaviour. This explains the need of structural studies for a full understanding 

of the functions. 

Haemoglobins of all vertebrates are strikingly uniform in their subunit architecture and 

molecular weight, which is often close to 65000 (Riggs 1970). The primary functional unit 

of Hb is the haem group, which consists of a porphyrin ring System surrounding a central 

ferrous ion. The haem groups are placed in pockets forrned by the characteristic folding of 

the globin chains. This arrangement enables a reversible reaction between the ferrous ion, 
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which remains in the reduced form, and the oxygen. In fishes the four globin chains (two a 
and two Ã chains) have 142 (a) and 146 (B) amino acids (AA) each. The complete sequences 

of these chains are known for a few temperate and tropical fish species only (Kleinschmidt 

& Sgouros 1987; Huber & Braunitzer 1989a, b). Recently the first sequences of Antarctic 

fish species were published (D'Avino & di Prisco 1988; D'Avino et al. 1989, 1990). Specific 

AA residues (see discussion) have been identified to be responsible for the various functional 

responses (Perutz et al. 1980; Perutz & Brunori 1982; Riggs 1988). 

Haemoglobin plays a dual functional role in the transport of 0, to the tissues. It must be 

able to 

- bind 0, effectively in the capillaries of the gas exchange Organs, and 

- unload 0, at high partial pressures in order to maintain a large diffusion gradient between 

the tissue capillaries and the 0.;-consuming structures. 

This is achieved by a complex oxygen equilibria System. A representative oxygen equilibrium 

curve for fishes is presented in Fig. 1.2. The curve can be described by the following 

equation: 

in which Y = fractional 0, saturation of haemoglobin, KA = equilibrium constant for Hb:02 

reaction, PO, = oxygen tension and n = Hill coefficient, which describes the degree of 

cooperativity (see below). Logarithmic transformation of equation (1) yields the Hill equa- 

tion: 

Y log- =n*log (PO->) +log ( KÃ£ 
1 - Y  

This is the common equation for a straight line (y=ax+b) and the Hill coefficient n and the 

equilibrium constant represent slope and Y-axis intercept, respectively. At 50% oxygen 

saturation (fractional saturation Y = 0.5), log Y/(1-Y) is Zero and the oxygen tension is the 

PS,,. Thus, the Hill plot (e.g. Fig. 2.12 in Materials and Methods) gives several Parameters 

directly. In the following section a brief description of these Parameters and their meaning 

is given (illustrated by Fig. 1.2): 

Values of n greater than one indicate that oxygen binding has positive cooperativity (i.e. the 

binding of the first O2 molecule is more difficult than the binding of consecutive 0, mole- 

cules). For n=l we find no cooperativity and for n<l the binding sites have different affini- 

ties for 0,. The oxygen tension at which Hb is 50% saturated with 0, is called PSo (see (3) 

in Fig. 1.2), which is a direct indicator for the 02-affinity of Hb (sirnilar to K,,,, the Michae- 
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lis-Menten constant in enzymes). The value of n at P50 is called nVi. 

The reaction between tetrarneric Hb and 0, can be expressed by the equilibrium reactions: 

For a description of this cooperative 0, binding of Hb several models have been established. 

The most commonly used theory is the allosteric model of Monod et al. (1965), which has 

been established for allosteric proteins (enzymes) in general. The Hb can exist in two 

conformations designated as T (tense) for deoxy-Hb and R (relaxed) for oxy-Hb. The binding 

of 0, to a subunit of T-Hb induces a conformation change in the tertiary structure to R-Hb 

with an abrupt increase in affmity. An excellent surnmary of the complex mathematics of this 

model is given by Nikinmaa (1990). More complicated is the description of the oxygen 

equilibrium when heterotropic interactions are considered. The above mentioned cooperativity 

is a homotropic interaction, as one ligand (0J influences the binding of consecutive mole- 

cules of the same ligand. However, it is well known that other ligands such as organic 

phosphates, Cl" Ions, carbon dioxide and pardcularly protons can influence the 0,-affinity of 

haemoglobins (Riggs 1988). 

The influence of 

protons On the OT- 

affinity of Hb is 

called Bohr effect. 
In mammals two 

types of Bohr effect 

are distinguished; in 

this work the Bohr 

effect refers to the 

alkaline, usually 

negative Bohr effect 

(Riggs 1988), i.e. a 

rightward shift of 

the equilibrium 

curve with decreas- 

ing pH (cf. (1) in 

Fig. 1.2). The mag- 

OXYGEN 
SATURATION 

80 160 

OXYGEN TENSION (mmHg) 

Fig. 1.2: Oxygen equilibrium curve of teleost haemoglobin. With decreasing 
pH the Bohr effect (I) and Root effect (2) is displayed. (3) = PW 

nitude of the Bohr effect is usually described by the Bohr coefficient <E> (~1ogPd~pH) .  The 

presence of organic phosphates and/or Cl' can dramatically increase the Bohr effect (Riggs 
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1988). The fact that metabolizing tissues tend to decrease pH due to production of CO, and 

acids, underlines the biological significance. At low pH the oxygen equilibrium curve shifts 

to the right and 0, unloading is eased. The Bohr effect helps to maintain a large gradient in 

PO, (0, partial pressure) between capillary blood and tissues. 

The Root effect occurs essentially in fishes and describes the fact that individual haemo- 

globins cannot be fully saturated with oxygen at a low pH, even under oxygen pressure of 

several atmospheres (see (2) in Fig. 1.2). This is reflected in a large decrease of the 0,- 

affinity and cooperativity of the haemoglobin. The phenomenon was f is t  observed by Root 

(1931). Since the Root effect is generally considered to be an extreme or extended Bohr 

effect, it can be increased by the presence of organic phosphates andfor Cl' as well. In two 

reviews (Brittain 1987; Riggs 1988) data with a large number of fish species have been com- 

piled. Many fish species show the Root effect in all haemoglobin components, whereas in 

others, only one or two components are sensitive to the decrease in pH. A direct link of the 

Root effect to the presence of either a swimbladder or a choroid rete mirabile in the eyes or 

both is assumed (Brittain 1987). The biological significance of the Root effect is 0, secretion 

into the swimbladder through production of lactic acid in so-called 'gas gland cells' andlor 

keeping up high O-, concentration in the choroid rete mirabile, which is required for effective 

diffusion and thus guarantees oxygen supply to the poorly vascularized fish eyes (Nikinmaa 

1990). 

ANTARCTIC FISHES AND THEIR ENVIRONMENT 

The Antarctic Ocean hosts little more than 200 coastal fish species (Andriashev 1965, 1985). 

About 50% of these species are exclusively found in Antarctic waters and belong to the 

suborder Notothenioidei (De Witt 1970). The origin of this suborder dates back to the lower 

tertiary (-50 rnillion years ago, Andersen 1984). Low temperatures have pervaded the 

Southem Ocean for some 40 rnillion years (Kennett 1977). However, recent data suggest 

more or less constant low temperatures (+3'C to -2OC, Hellmer & Bersch 1985) only since 

about 13 million years ago (Eastman & Grande 1989), which have led to the high degree of 

stenothemy and endemism of the fish fauna (De Vries & Eastman 1981). 

The high-Antarctic shelf seas are characterized by particularly low and constant temperatures 

(-1.6' to -2.1Â°C and high oxygen contents of more than 95% saturation (Hellmer & Bersch 

1985). Temperature has a direct influence on the solubility of gases (e.g. 0, and CO,) in 

liquids (e.g. water and plasma). Therefore, the low temperatures in polar oceans increase 

ambient 0, (Table 1.1) as well as the solubility in the body fluids. However, a small rise in 
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temperature, especially in the range 

below Zero, significantly decreases 

the solubility of oxygen. Additionally, 

due to the lack of regular exchange, 

the Warm Deep Water (WDW, 

Fig. 1.3) can contain as little as 5 ml 

0,P at 4.4OC in comparison to 8.5 

m l ~ l  at -1.9OC in the Ice Shelf Water 

(ISW, Arntz et al. 1990). 

T Freshwater seawater 
OCI iml O2P1 iml O2A1 

In the Weddell we find Table 1.1: The temperature effect on the amount of oxy- 
additional abiotic components, which gen dissolved in freshwater and in seawater in equilibri- 

govem fish life, such as a complex um with atmospheric air. 

System of currents and ice-drift, summer stratification due to melting processes and advection 

and a specific dismbution of water masses on the shelf (Hubold 1991, Fig. 1.3). 

Research On the Antarctic fish fauna focused On the detection of physiological adaptations to 

'highly unfavourable life conditions'. This is the reason, why we know much more about 

antifreeze, nervous function and muscle physiology than about life-cycles and ecology of 

these fishes. A comprehensive study on the ecology of the Weddell Sea fish fauna is present- 

ed by Hubold (1991). The concept of highly unfavourable life conditions is merely an 

anthropocentric point of view and only recently the idea was developed that conditions might 

not be bad at all, e.g. in terms of energetic requirements (Clarke 1990). 

Antarctic notothenioids belong to the highly developed perciform fishes. They have adapted 

to the progressive, but slow cooling of their environment since the tertiary. A special path- 

way of evolution has brought forward a variety of adaptations in their oxygen transport 

Systems (Wells et al. 1980). The general trend to reduce the number of erythrocytes and 

haemoglobin has been reported in all notothenioid farnilies (Kooymann 1963; Hureau et al. 

1977; Wells & Jokumsen 1982; Tetens et al. 1984). Wells et al. (1980) regard this as a 

mechanism of evolutionary adaptation; the farnily Channichthyidae, characterized by a com- 

plete lack of haemoglobin and by only few erythrocyte-like cells, would in this respect be the 

highest developed group of fishes in die Antarctic. 

Channichthyids, in comparison to their notothenioid relatives, have significantly larger hearts, 

diameter of vessels and blood volumes, though gills are of similar size (Holeton 1976). Other 

major compensatory mechanisms are the increased heart stroke volume, the decreased blood 

viscosity and the considerably higher difference in partial pressure of oxygen (PO,) between 
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blood and tissues (Macdonald et al. 1987). Thus, the rnissing haemoglobin is at least partially 

compensated by the increased solubility of oxygen in blood plasma. These fishes can reach 

respectable sizes (e.g. Champsocephalus gunnari up to 70 cm, Kock 1981) and fast growth 

is assumed also in Weddell Sea fishes (von Domen & RÃ¤ke unpublished; Hubold 1990). 

Fig. 1.3: Distribution of water masses. Cross-section at Vestkapp, Weddell Sea (from Hubold 
1990). 

Present knowledge in respiratory physiology 

Investigations on the gill morphometrics of Antarctic fishes have shown small total gill areas 

(TGA) and therefore suggested a low activity level (Kunzmann 1987, 1990). A small gas 

exchange surface in combination with a long diffusion distance (water-blood distance, WBD) 

leads to low diffusion ratios and presumably low oxygen turnover. This should also be 

reflected in the oxygen capacity of the blood. According to De Jager & Dekkers (1975) there 

is a strong correlation between oxygen capacity and activity of fishes. Thus, highly active 

fishes have a large TGA, a short WBD and a low oxygen affinity of their haemoglobin. 

Individual data on selected blood Parameters are published on about 30 of the approximately 
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100 notothenioid Antarctic species (Grigg 1967; Everson & Ralph 1968; Hureau et al. 1977; 

Wells et al. 1980; Wells & Jokumsen 1982; di Prisco et al. 1988, 1990; D'Avino & di Prisco 

1989; di Prisco & D'Avino 1989). Few Papers have presented detailed data Sets On blood 

oxygen-carrying capacity or functional properties. Most concentrate on comparisons between 

red-blooded and haemoglobinless species rather than On intrafamiliar studies or investigations 

of links to ecology and mode of life. 

Nearly all investigated species are from sub-Antarctic areas or the ROSS Sea, where so far 

(due to limited catching methods) only selected species from the entire ROSS Sea fish 

community have been studied. No data are available for characteristic species such as 

Pleuragramma antarcticum, Chionodraco myersi or Trematomus lepidorhinus, dominating the 

fish fauna in high-Antarctic waters. By far most of the few investigated species belong to the 

family Nototheniidae. Species of the three remaining farnilies of red-blooded notothenioids, 

namely Bathydraconidae, Artedidraconidae and Harpagiferidae, have only occasionally been 

investigated (Everson & Ralph 1968; Hureau et al. 1977; di Prisco 1988; di Prisco et al. 

1988; di Prisco & D'Avino 1989). 

In surnrnary our present knowledge about the blood physiology of Antarctic fishes is based 

on only few species. Trends detected in mainly sub-Antarctic species have been generalized. 

Previous studies On blood usually focussed On only one of the subjects haematology, haemo- 

globin function or haemoglobin structure. Few authors have attempted to correlate either of 

these subjects with ecological Parameters such as mode of life or activity pattem. This may 

be due to two major problems: we know very little about the ecology of most Antarctic fish 

species and those species of which blood physiological data are published do not Cover a 

large range of different ecotypes. 

When we want to gain insight into the principles which govem the development of adap- 

tations in the oxygen transport System of Antarctic fishes to their environment we need to 

combine haematology with structural and functional properties of haemoglobin. And we need 

data from species with distinct differentes in their mode of life. For instance, the blood 

physiology of P. antarcticum, the most abundant and the only fully pelagic fish species of 

high-Antarctic shelf Systems (Hubold 1985), is completely unknown. Particularly in high- 

Antarctic seas we find a high diversity of Trematomus and Pagothenia species which 

represent various ecotypes (Schwarzbach 1988, Ekau 1988). From most of them we have no 

blood data. The same applies to bathydraconids such as Bathydraco marri, B. macrolepis or 

Vomeridens infuscipinnis which were found to prefer deep and cold water (Ekau 1988). 
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HYPOTHESES 

From the observations and investigations cited above the following hypotheses and questions 

can be formulated: 

As outlined on Page 6 and 7, blood Parameters reflect mode of life andlor activity pattem in 

temperate and tropical fishes. The major hypothesis of the present study is that this also 

applies to Antarctic fishes. Are environmental factors such as oxygen content or temperature 

also reflected in their blood physiology? 

From findings in comparatively few species other authors postulated that all Antarctic fishes 

follow an evolutionary trend and have reduced haemoglobin concentrations and erythrocyte 

Counts. Can this be confirmed for a large number of hitherto uninvestigated species? 1s this 

evolutionary &end in haematology stronger than influence of mode of life or activity pattem? 

On which of the various haematological components do we find greatest influence? 

In the present study it is postulated that structure and function of haemoglobins also respond 

to the physico-chernical environment and to oxygen requirements of Antarctic fishes and 

therefore permit conclusions On their activity. Both, blood parameters and haemoglobins may 

indicate evolutionary trends and rnay reflect a possible tree of origin of the Antarctic fish 

fauna. 

We have only little information about the ecology of a large number of species. In this study 

it is assumed that most of the investigated links between blood physiology and ecology of 

temperate and tropical fishes also apply to Antarctic fishes. With the results of blood physi- 

ological studies it is attempted to predict (to a certain degree) the activity level of those 

species of which no other information is available. 

A detailed study of blood parameters of high-Antarctic fishes and rnolecular structure and 

oxygen-binding properties of their haemoglobins is outlined in this thesis. So far, it has not 

been med to relate the ecology of a large range of different Antarctic fish species to their 

haematology in combination with structural and functional studies on their haemoglobins. For 

most of the species it is the first record of haematology and haemoglobin properties. Empha- 

sis is placed on a high number of different ecotypes and mainly high-Antarctic species are 

chosen. Special attention is paid to the rnode of life and the evolution of these teleosts in 

relation to their habitat, in an attempt to find links with haematological characteristics. 



Materials and Methods 15 

Materials and Methods 

COLLECTION OF FISHES 

Fishes were caught by Agassiz Trawl, Bottom Trawl and Benthopelagic Trawl during PRV 

'Polarstern' expedition 'EPOS 111' (Jan - Mar 1988) in the eastern and southeastem Weddell 

Sea. Most of the fishes were captured at Kapp Norvegia, Vestkapp and Halley Bay (Fig. 2.1). 

A few specimens of sub-Antarctic species were collected around Elephant Island, in the 

vicinity of the Antarctic Peninsula. In the species list below they are marked with an asterisk. 

The exact positions, depths and duration of all hauls are given by Arntz et al. (1990). 

PRV "Polarstern" ANT Vll-4 (EPOS 3) 
....* ....., ..*..*.*.-, . ....- sampling area ,..... 

Queen Maud 
Land 

Gould Bay 

Fig. 2.1: Map of the Weddell Sea and the sampling area (from Hubold 1990, modified). 
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The following species were selected for blood investigations: 

Farn. Nototheniidae: Aethotaxis mitopteryx, Pleuragramma antarcticum, Dissostichus maw- 

soni, Trematomus centronotus, Trematomus eulepidotus, Trematomus lepidorhinus, Trema- 

tomus scotti, Pagothenia hansoni, Notothenia gibberifrons* 

Fam. Bathydraconidae: Bathydraco marri, Bathydraco macrolepis, Cygnodraco mawsoni, 

Gymnodraco acuticeps, Racovitzia glacialis, Gerlachea australis 

Farn. Artedidraconidae: Pogonophryne species 1-3 

Farn. Channichthyidae: Neopagetopsis ionah, Chionodraco myersi, Cryodraco antarcticus, 

Dacodraco hunteri, Pageropsis macropterus, Pagetopsis maculatus, Chionobathyscus dewitti, 

Chionodraco rastrospinosus', Chaenocephalus aceratus* 

Farn. Anotopteridae: Anotopterus pharao 

Fam. Macrouridae: Macrourus holotrachys 

Immediately after catch, the fishes were transferred to aquaria, where they were allowed to 

rest for at least 12 hours, in most cases 24 hours and more. Specimens of all species were 

kept alive onboard 'Polarstern' for several weeks, except for Aethotaxis rnitopteryx, Pleura- 

gramma anrarcticum, Anotopterus pharao and Macrourus holotrachys. A. rnitopteryx could 

only be maintained for up to three days and P. antarcticum never survived more than 48 

hours. The two non-endemic species A. pharao and M. holotrachys died immediately after 

the catch. Some individuals of several species (Fig. 2.2 to Fig. 2.5) were brought back alive 

to Gerrnany for subsequent research and are being maintained in aquaria for more than two 

years now. The number, size and weight range of investigated specimens is summarized in 

Table 2.1. 

ANALYSIS OF BLOOD SAMPLES 

Individual blood samples were drawn from the caudal vein of unanaesthetized specimens by 

means of heparinized syringes. The procedure was usually completed within 20 seconds from 

the first handling of a specimen. The general blood Parameters were investigated immediately 

on board 'Polarstern' (Rankin et al. 1990) and comprised: pH, PO, and PCO, (partial 

pressure of oxygen and carbon dioxide), RBC (number of red blood cells), Hct (haematocrit), 

Hb (haemoglobin concentration), MCH (mean cellular haemoglobin) and MCHC (mean 
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Fig. 2.2: Gymnodraco acuticeps, Bathydraconidae. Specimen of 29 Cm lengih rnaintaine( 
at the Alfred-Wegener-Institut since March 1988. 

Fig. 2.3: Bathydraco m r r i ,  Bathydraconidae. Specimen of 21 crn length. 
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Fig. 2.4: Pogomphryne sp.2, Artedidraconidae. One of ten swcimens maintained at the 
Institut fiir ~ o l a ~ k o l o ~ i e ~ a n d  the Alfred-Wegener-Institut siice March 1988. 

Fig. 2.5: Trematomus eulepidotus, Nototheniidae. Specimen of 20 Cm length. 
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Table 2.1: Size and weight ranges of investigated specimens. N = specimen 
number, TL = totai length, W = weight, rnax = maximum, min = minimum, 1 = not 
recorded. 

Species N TL max TL min W max W min 
[cml [cml [gl [gl 

Nototheniidae 
Aethotaxis mitopteryx 
P Z e u r a g r m  antarcricm 
Dissostichus mawsoni 
Trematomus centronotus 
Trematomus eulepidotus 
Trematomus lepidorhinus 
Trematomus scotti 
Pagothenia hansoni 
Notothenia gibberi3ons 

Bathydraconidae 
Bathydraco marri 
Bathydraco macrolepis 
Cygnodraco mawsoni 
Gymnodraco acuticeps 
Racovitzia glacialis 
Gerlachea australis 

Artedidraconidae 
Pogonophiyne sp.1 
Pogonophiyne sp.2 
Pogonophiyne sp.3 

Channichthyidae 
Neopagetopsis ionah 
Chiotwdraco myersi 
Cryodraco antarcticus 
Dacodraco hunteri 
Pagetopsis mcropterus 
Pagetopsis mculatus 
Chionobathyscus dewitti 
Chiotwdraco rastrospinosus 4 36 
Chaenocephalus aceratus 3 62 

Anotopteridae 1 
Anotopterus pharao 1 89 

Macrouridae 3 
Macrourus holotrachys 3 40.5 
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corpuscular haemoglobin concentration). For very small specimens of P. antarcticurn and B. 

m r r i  it was necessary to pool samples in order to have enough volume for all measurements. 

Blood gases (PO2 and PC02) and pH were measured at OÂ° with a modified 'Eschweiler' 

blood-gas-analyzer System 2000, type 2031-02 ECO (Fig. 2.6). The samples were injected 

immediately after the collection. A great advantage of this system, which was developed for 

the clinical use On humans, is the small sample volume necessary (Fig. 2.7). The analyzer 

works successfully with a minimal volume of 40 pl (!). Due to the low temperature in the 

cooling container (-1Â°C) the recording cycles and the automatic calibration had to be 

adjusted. Each sample was measured in three consecutive cycles, results were averaged. 

The number of red blood cells was counted with a 'Sysmex' CC-108 cell Counter. For 

every species the adjustment for the cell size plateau was done individually. This was 

checked by counting the cells in a 'Thoma' chamber under a microscope (Romeis 1968; 

Hailmann 1980). For dilution the 'Hayem's' fluid was used. Each sample was counted 

threefold, results were averaged. 

Haematocrit was estimated with 75 mm microcapillaries run at 12000 rpm in a 'Heraeus' 

microhaematocnt cenmfuge according to DIN 58933 (Coburn & Fischer 1973; Hallrnann 

1980). Each sample was divided into three capillaies, results were averaged. 

For the determination of the haemoglobin concentration the internationally standardized 

cyan-met-haemoglobin method was used (Coburn & Fischer 1973; Hallmann 1980). Tnple 

measurements at 540 nm were conducted with each blood sample. 

From the values for RBC, Hct and Hb the mean cellular haemoglobin (MCH) and the 

mean corpuscular haemoglobin concentration (MCHC) was calculated according to MCH 

= Hb/RBC and MCHC = Hb*lOO/Hct (Cobum & Fischer 1973; Hallmann 1980). 

The mean size of erythrocytes of every species was computed with a 'Leitz' Microvid 

system using a 'Leitz' microscope and a 'Toshiba' laptop Computer for relaying size bars and 

grids. Initial tests revealed that there is no size difference between fresh and preserved cells. 

At least 100 cells of every specimen were sized (Fig. 2.8 - Fig. 2.1 1). For comparison with 

data from other authors always the longest section was chosen. This is of minor irnportance 

for 'normal' cells (Fig. 2.101, but of great importance for cells shaped like in R. glacialis 

(Fig. 2.1 1). The results were averaged and are presented as mean erythrocyte length (MEL). 
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Fig. 2.6: 'Eschweiier' blood-gas-analyzer o ~ r a t e d  at -lÂ° in a cooling-container. 

Fig. 2.7: Sample c h m k r  of 'Eschweiler' blood-gas-analyzer with three electrodes 
(A,B,C). The volume of the visible blood sample is SO pl (-->I. 
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Fig. 2.8: Pleuragramma antarcticum, Nototheniidae, Red blood cells preserved with 
Hayem's fluid. Average diameter is 11.5 um. 

Fig. 2.9: Aethotaxis mitopteryx, Nototheniidae. Erythrocytes of fresh blood smear. 
Average diameter is 12.9 um. 
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Fig. 2.10: Bathydraco marri, Bathydraconidae. Red blood cells at low rnagnification for 
ovewiew. Average diarneter is 12.6 um. 

Fig. 2.11: Racovitzia glacialis, Bathydraconidae. Note the different shape of the red blood 
cells in comparison to the preceding micrographs. 
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The remaining blood was centifuged and cells and plasma were frozen separately at -80Â°C 

Some cells were preserved in 'Hayem's' solution for subsequent studies under the light 

microscope (Romeis 1968). 

Structural and functional studies were carried out On kozen cells in the laboratory 'BP2' at 

the Institute of Frotein Biochemistry and Enzymology (IBPE) at Naples in the group of Prof. 

di Prisco. Haemolysates were prepared according to earlier described methods (D'Avino & 

di Prisco 1988) with 20 mM TRIS/HCl at pH 8.0. Met-haemoglobin forming was checked 

spectrophotometrically and did not reveal significant amounts due to the freezing and storing 

procedure. For the detection of multiple haemoglobin components electrophoretic analysis of 

haemolysates was carried out On cellulose acetate in TRISIGlycine at pH 9.0 with a chamber 

from 'Gelman Sciences'. Assessment of globin molecular weight was achieved by means of 

SDS-polyacrylamide gel electrophoresis, which was run On a 'Bio Rad' System PROTEAN 

I1 together with a standard of known molecul~  weight. Both procedures had been previously 

described in detail (D'Avino & di Prisco 1988). 

Investigations On the primary structure (amino acid composition and sequence) of haemo- 

globins are very time-consuming and expensive and require a complete team to work O n .  

Therefore these studies were carried out from the above-mentioned team 'BP2' in Naples. 

The studies are still in process and until now the haemoglobins of the two species Bathy- 

draco marri and Aethotaxis rnitopteryx could be sequenced completely. 

The procedures of preparation, purification and proteolytic cleavage of globin chains, 

purification of tryptic peptides, amino acid analysis and sequencing were used according to 

earlier described methods (D'Avino & di Frisco 1988; D'Avino et al. 1989). Modifications 

were applied when necessaq and the complete process applied in the case of Bathydraco 

marri haemoglobin is about to be published in detail (Cmso  et al. in prep.). The following 

paragraph is a brief sumarization: 

The globin chain mixture was prepared by the acetone-acid method (Rossi Fanelli et al. 

1958) and subsequently chromatographed On a high performance liquid chromatographer 

(HPLC) for separation and purification. The single globin chains were then digested with 

trypsin. The resulting peptide mixtures were dried by lyophilization. Protein cleavage at 

defined amino acids (Asp-Pro) was performed as previously described (Schininii et al. 1988). 

Tryptic peptides were purified by reversed-phase HPLC. 
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The amino acid analysis was accomplished On an 'Applied Biosystems' model 420A derivat- 

izer-analyzer System. The sequencing was perfomed On a pulsed-liquid phase sequencer 

model 477A from 'Applied Biosystems' following the technique of automated repetitive 

Edman degradation. 

FLJNCTIONAL STUDES 

In the oxygen-binding studies some haemolysates were 'smpped', i.e. endogenous organic 

phosphates, which may act as effectors, were eliminated by treating the haemolysate with a 

mixed-bed ion-exchange resin, However, a comparison with 'unsmpped' haemolysates 

revealed that, probably due to the long Storage in the freezer, endogenous organic phosphates 

were no longer detectable; thus 'stripping' of 'old' haemolysates appeared unnecessxy. In the 

study of Rmt and Bohr effects, oxygen saturation and PS,, (the oxygen partial pressure 

required to achieve half-saturation) were measured spectrophotome~cally at 20Â° as de- 

scribed by Giardina & Amiconi (1981) and di Prisco et al. (1988). Oxygen equilibna were 

measured between pH 8.5 and 6.0 in steps of 0.5. Due to a shortage in material for some 

species the stepsize was increased to 1.0 in tests On influence of effectors. In order to 

investigate the influence of organic phosphates and Cl--ions On the binding properties, NaCl, 

ATP andor inositol hexaphosphate (IHP) were used throughout all expenments in saturating 

concentrations. Several initial tests revealed no difference in effect between IHP and ATP. 

Haemolysates were treated as follows: 

For the Rmt effect study, the spectrum of oxygenated Hb was recorded between 600 and 500 

nm in the absence and presence of organic phosphates. After treatment with sodium di- 

thionite, the spectrum of the deoxygenated Hb was recorded again. The absorbance values at 

540, 560 and 575 nm were used to calculate the degree of 02-saturation at varying pH values 

(Giardina & Amiconi 1981). At these wavelengths maximal absorbance variation occurs in 

the oxyldeoxy transition. 

For the Bohr effect analysis, Hb was deoxygenized in a special tonometer under constant 

rotation by means of a vacuum pump. The spectrum of fully deoxygenated Hb was recorded 

between 500 and 600 nm. Subsequently an exactly defiied amount of oxygen (air) was added 

and the altered spectrum was recorded again. This procedure was repeated in steps until full 

saturation of the Hb was reached again. The oxygen saturation was then calculated as 

described above and used for the Hill plot (Riggs 1988). The Hill plot yields the oxygen 

partial pressure at 50% saturation (log Pso) and the Hill coefficient (n%), respectively: i.e. the 

X-axis intercept and slope of the derived straight lines. One example of all Hill plots generat- 
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ed is presented in Fig. 2.12 for Bathydraco marri. From the information of this plot the 

oxygen equilibrium c w e  (Fig. 3.6 in the Results section) was obtained. 

When a second 

haemoglobin (J3b2) 

was detected in rela- 

t i v e l y  l a r g e  

amounts, as was the 

case for P. ant- 

arcficum (see Re- 

sults), the two com- 

ponents Hbl and 

Hb2 had to be sepa- 

rated in order to 

study Rmt and 

Bohr effects individ- 

ually. This was 

achieved by ion- 

exchange chroma- 

tography On a col- 

umn of DE 52, 

equilibrated with 50 

mM TRISkICI at 

pH 7.6. Hb2 was 

eluted with 100 mM 

0.2 0.4 0.6 0.8 1.0 1.2 1.4  1.6 1.8 2.0 2.2 2.4 

log P02  

Fig. 2.12: Hill plot for Bathydruco marri haemoglobin (pH 6.0-8.5, without 
effectors). Y = fractional saturation. The log PS and the Hill coefficient are 
given through X-axis intercept and slope of the regression lines 

TRIS. Due to the fomation of met-haemoglobin the two components had to be reduced and 

reoxygenated. Unfortunately, these procedures decreased the stability of both haemoglobins 

at 10w pH. Due to met-Hb formation, the acidic values of 6.0 and 6.5 had to be ornitted in 

both Rmt and Bohr effect studies. The inevitable loss of material during the separation and 

the limited amount of available samples only allows to consider preliminary results of the 

functional studies On P. antarcticum haemoglobins. The limited amount of samples is the 

reason for not presenting results On the Bohr effect of haemoglobins for some species of 

Table 2.1 (T. scotti, B. macrolepis, G. australis, Pogonophryne sp.1 and 3, M .  holotrachys, 

A. pharao). For P. hansoni, N .  gibberifions, G. acuticeps and C. mawsoni results of function- 

a1 studies have already been published (Wells & Jokumsen 1982; di Prisco et al. 1990). 



Results 

BLOOD PAMMETERS 

General observations 

The red b l d  cells of some 

species (e.g. P l e u r a g r a m  

antarcticum, Racovitzia gla- 

cialis and pmicularly of all 

examined Pogonophryne spe- 

cies) seem to be more fragile 

than others. Although the same 

treatment was used in each 

withdrawal of b l d ,  a high 

level of haemolysis reduced the 

number of available samples for 

the above mentioned species. 

Moreover, the b l d  of Pogono- 

phryne species was of a remark- 

able, lightly red colour and 

became 'slimy' independent of 

the heparin concentration used 

to prevent coagulation. The 

haemolized and 'slimy' samples 

were discarded. The b l d  of 

some Pogonophryne specimens 

and a few Gerlachea autralis 

Fig. 3.1: Haematocrit capillaries with samples from T. scotfi and 
(2-3 %' maybe 'POP~O- G. ausrralis (ieft). Note the fatty component on top of the 
Ein) after cenmfugation in packed cells (left) in companson to the clear supematant (right). 

microcapillaries (see 'FAT' in 

Fig. 3.1). 

Red blood cell dimensions 

When erythrwytes were measured and counted visually, the red blood cells of all investigat- 

ed species but one were found to have the same shape. The regulax ellipsoid to discoid 

contours are shown in Fig. 2.8-2.10. Only the cells of Racovitzia glacialis seem to be 
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stretched in longitudinal direction (Fig. 2.1 1). This is refiected in the mean erythrocyte length 

(MEL) in Table 3.1, where R. glacialis has the largest cells of aii bathydraconids (13.5 pm). 

MEL ranges from 6.1 pm in Trernatornus scotti to 13.6 pm in Trematornus eulepidotus. This 

also demonstrates the large variation even within the Same family. MEL in channichthyids 

(7.2 pm) is clearly lower as compared to nototheniids (11.6 pm) and bathydraconids (11.9 

Haematocrit and red blood cell Counts 

The two Parameters haematocrit (Hct) 

and number of red blmd cells (RBC), 

which express the contribution of cellu- 

lar components to the total blood tissue, 

are summarized in Table 3.2 for Al 

investigated high-Antarctic species (i.e. 

excluding channichthyids). Haematocrit 

varies between 12.4% in Pagothenia 

hansoni and 29.5% in Pogonophrjme 

sp.3. The two non-endemic species Ma- 

crourus holotrachys and Anotopterus 

pharao are weii within this range, The 

data do not seem to be related to activity 

level or taxonomic category. 

The number of red blood ceiis varies 

between 0.39*1012/l in Aethotaxis mitop- 

teryx and 0.99*1012/l in Macrourw holo- 

trachys. In the families Bathydraconidae 

and Artedidraconidae the range of values 

Table 3.1: Red blood celi size of Weddeli Sea fish 
species. MEL = mean erythrocyte length, SD = stan- 
dard deviation, n = 100, mean values for families are 
also given, 1 = not applicable here. 

Species MEL SD 

Nototheniidae 
Aethotaxis mitopteryx 
P l e u r a g r m  antarcticum 
Dissostichus mawsoni 
Tretnatomus eulepidotus 
Trematornus scotti 
Notothenia gibberzpons 

Bathydraconidae 
Bathydraco m r r i  
Gymnodraco acuticeps 
Racovitzia glacialis 
Gerlachea australis 

Artedidraconidae 
Pogonophryne sp.2 

Channichthyidae 
Chwnodraco my ersi 
Cryodraco antarcticus 
Chwnodraco rastrospinosia 

is more narrow and their average number of erythrocytes is significantly lower (0.51*1012P 

and 0.66*1012/l, respectively) as compared to nototheniids (0.72*1012/l). 

Haemoglobin concentration und derived Parameters 

The values for the haemoglobin concentration (Hb) and all derived parameters, such as mean 

corpuscular haemoglobin concentration (MCHC) and mean cellular haemoglobin (MCH), are 

compiled in Table 3.2. From these vdues and the knowledge of oxygen solubiiity in plasma 

(0.8 vol %; Gngg 19671, the total oxygen carrying capacity of blood (02CC) was calculated. 

In addition the theoretical contribution of plasma to the total oxygen transport (PC) is 

presented in this table. 
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A comparison of all blood Parameters with values known from temperate and tropical species 

is presented in the discussion. 

Haemoglobin concentration varies between 20.1 g/l for Gymnodraco acuticeps and 47.1 g/l 

for Dissostichus mawsoni. Again we find highest variability within the family Nototheniidae 

(28-47 g/l)  and again the average values for the families are highest in nototheniids (42 g/i)  

and lowest in bathydraconids (27 g/l) .  Other authors report a range of 23-43 g/l for Antarctic 

fishes (Wells et al. 1980, 1990). 

Table 3.2: Blood parameters of red-blooded Antarctic fishes. Haematocrit (Hct), red blood cell Count (RBC), haemoglo- 

bin content (Hb), mean corpuscular haemoglobin concentration (MCHC), mean ceilular haemoglobin (MCH), blood 

oxygen carrying capacity (0,CC) and plasma contribution to total oxygen transport (PC) for investigated species of five 

families. The number of individual specimens for a particular species is at least 10, except for species marked with '. For 

each of these samples triple measurements were conducted. For T. centronotus, B. macropterus and A ,  pharao only one 

sample was available. / = not recorded, SD = standard deviation. 

Specles Hct RBC Hb MCHC MCH 0,CC PC 
[%I Â±S [1O1*/1] Â±S [gll] Â±S [gll] [pg] [%I [%I 

Nototheniidae 
A. miiopteryx 
P .  aniarcticum 
D. mawsoni 
T .  centronotus' 
T .  eulepidotus 
T .  lepidorhinus 
T.  scotti 
P .  hansoni 

Bathydraconidae 
B.  marri 
B ,  macrolepis' 
C .  mawsoni 
G.  acuticeps 
R. glacialis 
G .  dustralis 

Artedidraconidae 
Pogonophryne sp.1. 
Pogonophryne sp.2 
Pogonophryne sp.3' 

Anotopteridae 
A. pharao 

Macrouridae 
M .  holotrachys 

The so-called 'erythrocyte indices' MCHC and MCH relate erythrocytes and haemoglobin to 

the efficiency of red cells for oxygen transport (Coburn & Fischer 1973). The variation of 

MCHC and MCH between species is considerably less than the variation in Hct, RBC and 

Hb (Table 3.2). A species with moderate Hb concentration values and rather low haematocrit, 
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such as Aethotaxis mitopteryx, can reach a MCHC (198 g/l) close to that of D. mawsoni (188 

@). This is due to a rather high haematocrit of D. rnawsoni, which also has rnuch higher Hb 

concentration vaiues. This means that in the sarne volume of red blood cells of both species 

we find approximately the Same amount of haernoglobin. Provided the size of erythrocytes 

of both species does not differ considerably, this is reflected in the MCH. The average 

erythrocyte of A. mitopteryx carries more Hb (71.3 pg) than the average erythrocyte of D. 

rnawsoni (53.3 pg). 

Although the more active species such as D. rnawsoni, Trematomus eulepidotus or G. 

acuticeps have low MCH vaiues, there is no clear relation of this Parameter to the activity 

level of species. A few inactive species also have low MCH values. 

When ecological significance is considered, then the irnportant factor is the total oxygen 

carrying capacity (0,CC) of the blood and not so much the haernatocrit, erythrocyte number 

or haernoglobin concentration per se. In Table 3.2 we find high values of 0,CC for active 

species such as D. rnawsoni (7.2%) and T .  eulepidotus (7.0%). As a consequence the contri- 

bution of plasma to the total oxygen transport (PC) in these two species is low ("8.5%). The 

PC can reach values of up to 16-19%, which means mbre than 116 of the oxygen transport 

relies on the plasrna alone. Published values for the 0,CC in Antarctic fishes are in the range 

4.5-6.5% (Macdonald et al. 1988) and frorn Arctic teleosts a range of 3.4-8.4% is reported 

(Scholander & van Dam 1957). This subject together with a cornparison with haemoglobin- 

less species and species from lower lati- 
Table 33: Count of erythrocyte like cells ('RBC') of 

tudes is resumed in the discussion. channichthyids. For P. macropterus only one sample 
was available. SD = standard deviation. 

The results of the Counts of 'red-blood-cell- 

like' cells in the channichhtyids are summa- 

rized in Table 3.3. The nurnber of cells is 

one to two orders of magnitude lower than 

for red-blooded Antarctic species and rang- 

es from 0.56*1010/l in Neopagetopsis ionah 

to 3.99*lOl0/l in Chaenocephalus aceratus. 

The few values available from published 

sources are well in line with the values 

presented here (Hureau et al. 1977; Wells et 

al. 1990). According to these data N. ionah 

has the lowest number of cells ever ob- 

served in a fish species. 

Species 'RBC' 
[lO1"/I] Â±S 

Channichthyidae 
N .  ionah 
C. myersi 
C. antarcticus 
D. hunteri 
P. macropterus* 
P. maculatus 
C .  dewitti 
C. rastrospinosus 
C .  aceratus 



PH and blood gases 

Table 3.4 surnrnarizes the results of measurements with the blood-gas-analyzer, i.e. pH, PCO, 

and PO2 (partial pressures of 0, and CO,) of venous blood. These values together are a good 

indicator of the actual oxygen conditions in the fish prior to sampling and to a certain extent 

reflect Stress conditions. Usually the b l d  PCO, immediately after capture was rather high 

(> 10 mm Hg). Specimens of several taxa were able to eliminate their initially high PCO, 

nearly completely after several days in the aquaria. Some of them lowered PC02 amazingly 

fast within a few hours (Racovitzia glacialis, Aethotaxis mitopteryx, Gyrnnodraco acuticeps). 

Table 3.4: Oxygen wnditions in blood of Antarctic fishes. pH, PO, and PCO, (partial pressures of 0, and CO,) mea- 

sured with a blood-gas-analyzer. The number of individual specimens for a particular species is at least 10, except for 

species marked with '. For each of these samples mple measurements were wnducted. For T cenironotus only one 

sample was available. From species marked with ' mainly samples from s ~ e s s e d  specirnens had to be used. SD = stm 

dard deviation. 

Species pHÂ±S 
L11 

Nototheniidae 
A. mitopteryx 
P. antarcticum 
D. mawsoni 
T. centronotus' 
T. eulepidotus 
T. lepidorhinus 
T. scotti* 
P. hansoni 
N. gibberifrons 

Bathydraconidae 
B. marri 
B. macrolepis*' 
C .  mawsoni 
G. acuticeps 
R. glacialis 
G. australis 

Artedidraconidae 
Pogonophryne sp.2 
Pogonophryne sp.3' 

Channichthyidae 
N. ionah 
C.  myersi 
C. antarcticus 
D. hunteri 
P. macropterus' 
C. rastrospinosus' 



Values for PCO, were usually measured in the range 1-4 mm Hg. Unfortunately, of some 

species (marked with X, Tab. 3.4) mainly samples from stressed specimens had to be used. 

Therefore, the mean of these samples is high (up to 6.4 mm Hg). PO, usually varied between 

25 and 50 mm Hg. Obviously channichthyids are able to maintain a higher PO, than mem- 

bers of other families. Their average PO, of 68 mm Hg is significantly higher (P<0.02) than 

PO, for nototheniids (36.3 mm Hg) or bathydraconids (53.6 mm Hg). 

The measured pH varies only little and is usually in the range of 7.6-7.8, except for artedi- 

draconids, where the pH is slightly higher at 8.0-8.1. For other Antarctic species a pH of 7.3- 

8.3 was found (Qvist et al. 1977). 

HAEMOGLOBIN STRUCTURE 

Haemoglobin multiplicity 

Electrophoretic analysis of haemolysates of notothenioids shows a general Pattern, indicating 

the presence of a single haemoglobin. When two components are found, one of these 

components accounts for 90-95% of the total (di Prisco 1988; D'Avino & di Prisco 1988, 

1989; di Prisco et al. 1990). Fig. 3.2 presents the results of cellulose acetate electrophoresis 

(CAE). The number of components is clearly visible. Most investigated species have only 

one component. T. eulepidotus, T. lepidorhinus, T.  scotti and P. hansoni have a second 

component in minor amounts. P. antarcticum is the only species, where the second compo- 

nent is present in higher amounts (20-25%). 

The two non-endemic species M. holotrachys and A. pharao have a higher multiplicity (three 

and four components, respectively), as most non-Antarctic fishes have. SDS-polyacrylamide 

gel electrophoresis of the globin mixture from these haemoglobins reveals that the polypep- 

tide chains (a and ÃŸ of the different components have slightly different molecular weights, 

close to 16000 (Fig. 3.3). The two haemoglobins of P. antarcticum have three polypeptide 

chains only, because the Ã chain is in common. 

It should be kept in mind that one band on the gel can contain more than one globin chain, 

because of very similar molecular weights. Anotopterus pharao for example (no. 13 in  

Fig. 3.3), has three bands, although with CAE electrophoresis (Fig. 3.2) four components 

were found. This means that either globin chains are in common or one band refers to more 

than one globin chain. 

Table 3.8 at the end of the Results section and table 4.4 in the Discussion section show a 

comparison of number of haemoglobin components with all data available so far. 



Fig. 3.2: Sketch of cellulose acetate electrophoresis of Antarctic fish haemo- 
lysates. The arrow indicates origin, + and - refer to polarity. 
1 B. marri; 2 B. macrolepis; 3 R. glacialis; 4 G. australis; 5 Pogonophryne sp.2; 6 D. 
mawsoni; 7 A. mitopteryx; 8 P. antarcticum; 9 T. lepidorhinus; 10 T.  eulepidotus; 11 T .  scotti; 
12 P. hansoni; 13 A. pharao; 14 M .  holotrachys 

Fig. 3.3: Sketch of SDS-polyacrylamide gel electrophoresis of globin com- 
ponents of Antarctic fishes. The arrow indicates origin. The molecular 
weights of the a and Ã chain of Hbl of Notorhenia coriiceps neglecta were 
used as standards. 
1 N. coriiceps neglecta Hbl; 2 B. marri; 3 B. macrolepis, 4 G. australis; 5 R. glacialis; 6 
Pogonophryne sp.2; 7 D. mawsoni; 8 A. mitopteryx-, 9 P. antarcticum; 10 T. lepidorhinus; 11 
T. eulepidotus; 12 P. hansoni; 13 A. pharao; 14 M.  holotrachys 



Amino acid sequence of the globin chains 

The primary structure of the haemo- 

globins invesrigated here has so far Table 3.5: Number of individual arnino acids in a and Ã 
chains of Aethotaxis mitopteryx and Bathydraco marri 

been elucidated for the two species haemoglobin. 
Bathydraco marri and Aethotaxis 

mitopteryx and is subrnitted for pub- 

lication (Kunzmann et al.; Caruso et 

al.) or in preparation (Kunzmann et 

al.; D'Avino et al.). 

The amino acid sequences of a and Ã 

chains of B. marri haemoglobin are 

shown in Fig. 3.4. The total number 

of amino acids (AA) in the a and Ã 

chain are 142 and 146, respectively. 

AA occumng most frequently in the 

a chain are Serine, Alanine, Leucine 

and Lysine with approximately 10% 

each (Table 3.5). Cysteine occurs 

only once. In the Ã chain most fre- 

quent amino acids (AA) are Alanine, 

Leucine and Isoleucine. Here Cyste- 

Amino A .  mitopteryx A .  mitopteryx B .  marri B .  marri 
seid a chain Ã chain a chain Ã chain 

Ala 
Arg 
Asn 
Asp 
CY s 
Gin 
Glu 
GlY 
His 
Ile 
Leu 
LY s 
Met 
Phe 
Pro 
S er 
Thr 
Trp 
TY 
Val 

ine occurs twice. The molecular weights, calculated from the sequence (15552 and 16048, 

respectively) are in good agreement with those determined by SDS-polyacrylamide gel 

electrophoresis (Fig. 3.3). 

The AA sequences of a and Ã chains of A. mitopteryx are shown in Fig. 3.5. The increase in 

number of acidic (AspIGlu) and basic (ArgLys) AA in both chains is evident in comparison 

to B. marri (Table 3.5). The molecular weights, calculated from the sequence, are 15702 and 

16291. Note the different end-terminal AA 'Val' in the Ã chain of A. mitopteryx in compari- 

son to 'His' in B. marri. Two other AA known so far to be responsible for the Bohr and 

Root effect (i.e. 'Ser' and 'Glu' in position 93 and 94 of the Ã chain) are present in both 

species. 



Fig. 3.4: Amino acid sequence of the a (panel A) and Ã (panel B) chain of B. marri haernoglobin. 

Fig. 3.5: Amino acid sequence of the a (panel A) and Ã (panel B) chain of A. mitopteryx haemoglo- 
bin. 



Table 3.6 shows the degree of sequence identity among the a and 8 chains of B. marri and 

A. mitopteryx haemoglobin and some of the few available sequences of fishes living under 

totally different environmental conditions (carp, Cyprinus carpio; trout, Salrno irideus; bluefin 

tuna, Thunnus thynnus), as well as the sequence of the Antarctic teleost Notothenia coriiceps 

neglecta (D'Avino et al. 1989). Apparent is the fact that sequence identities of haemoglobins 

(only Hbl) are always higher among Antarctic fishes, whether they have a Root effect or not 

(A. mitopteryx haemoglobin has no Root effect, See functional studies). 

Table 3.6: Sequence identity (%) of the a and Ã chain of fish haemoglobins frorn ~ntarctic" and 
non-Antarctic fishes (from Kunzmann et al. submitted and D'Avino pers. comm.) 

SPECIES T. thynnus C. carpio S .  irideus B. marri' N .  coriiceps N .  coriiceps 
HbIV neglecta neglecta 

Hb2" Hbl' 

a-chains 
A. mitopteryx 75 62 59 84 85 83 
N. cor. negl. Hbl" 73 59 57 84 63 
N. cor. negl. Hb2" 68 63 63 71 
B. marri' 79 65 63 
S. irideus HbIV 60 63 
C. carpio 66 

fi-chalns 
A. mitopteryx 67 58 
N .  cor. negl. Hbl.Hb2' 66 57 
B. marri' 66 57 
S .  irideus 6 1 73 
C. carpio 60 

HAEMOGLOBIN FÃ¼NCTIO 

Oxygen-binding properties 

The oxygen binding properties of haemoglobins were investigated in the pH range 6.0-8.5, 

the physiologically possible range. As presented in Table 3.4 in the blood gas paragraph 

(page 31) the normal in viv0 pH is around 7.8. Experiments were perforrned in the presence 

and absence of saturating concentrations of organic phosphates and Cl" ions. In most cases 

particularly the organic phosphates clearly increased both Root and Bohr effects. In a few 

cases the Cl" ions accounted for up to 50% of the increase in effect. The results of the studies 

on Root and Bohr effects are displayed in individual plots. Fig. 3.6 to Fig. 3.13 show Bohr 

effects and Fig. 3.14 to Fig. 3.28 Root effects of all investigated species. 
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0 . ~ 1  T. lepidorhinus 

Fig. 3.6 and Fig. 3.7: Oxygen affinity of haemoglobin as a function of pH 
(Bohr effect). Haemolysate in the absence (0) or presence (A) of 0.1 M 
NaCl and (+) of 0.1 M NaCl, 3 mM inositol hexaphosphate (IHP). 

As indicated in the Materials and Methods section, the Bohr effect studies could only be 

completed for some of the investigated species (Fig. 3.6 to Fig. 3.13). Particularly in the case 

of Pleuragramma antarcticum, there was not sufficient material available after separation of 

the two haemoglobins. The presented plot for Hb2 (Fig. 3.12) is therefore only prelirninary, 

but nevertheless well-suited to indicate trends. The Same applies to the graph of Pogono- 

phryne sp.2 (Fig. 3.13), where possible uends are shown in dotted lines. 
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As can be seen from the graphs, each haemoglobin responds very individually to changes in 

pH, oxygen saturation and concentsation of effectors. Since it is the intention of this work to 

focus on ecological significance, I will not discuss each individual plot in great detail. Instead 

I selected two representative examples (B. m r r i  and A. mitopteryx) in order to present those 

results which will be considered again in the Discussion and Conclusions. 

Fig. 3.8 and Fig. 3.9: Oxygen affinity of haemoglobin as a function of pH 
(Bohr effect). Haemolysate in the absence (D) or presence (A) of 0.1 M 
NaCl and (+) of 0.1 M NaCl, 3 mM inositol hexaphosphate (IHP). 



Fig. 3.10 and Fig. 3.11: Oxygen affinity of haemoglobin as a function of 
pH. Haemolysate in the absence (D) or presence (A) of 0.1 M NaCl and (+) 
of 0.1 M NaCl, 3 mM IHP. Note a very weak Bohr effect in the lower plot. 

Bohr effect studies 

When measuring the effect of pH on the oxygen equilibrium curve of B. marri haemoglobin, 

a large, negative, alkaline Bohr effect was observed (Fig. 3.6). Both effectors (organic 

phosphates and Cl" ions) clearly increased the extent of pH regulation. Between pH 7 and 8 

at 20' C, the maximum Bohr coefficient <Â (~ logP~n /~pH)  was -1.0. In the presence of Cl' 
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and organic phosphates the coefficient increased considerably to - 1.1 and - 1.4, respectively. 

It is wortb noting that the physiological pH is 7.7 (Table 3.4); the maximum <S> is also around 

this pH. 

25 

2 

8 1.5 

1 

0.5 P. antarcticum Hb2 

0 
5 7.0 7.5 

Pogonophryne sp.2 

Fig. 3.12 and Fig. 3.13: Oxygen affinity of haemoglobin as a function of pH 
(Bohr effect). Haemolysate in the absence (D) or presence (A) of 0.1 M 
NaCl and (+) of 0.1 M NaCl, 3 mM IHP. The dotted lines arc predicl~ons 
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The Hill coefficient (n%) decreased from 2 at pH 8.5 to 1 at pH 6.0, indicating disappearance 

of subunit cooperativity at low pH. The apparent oxygen affinity at pH 7.5 and 20Â° was 

relatively low, with a Pro value of 13.2 mm Hg. In the presence of the effectors, the affinity 

decreased considerably to a Pro value of 33.1 mm Hg at pH 7.5 and 20Â°C AH (i.e. apparent 

heat of oxygenation) values of -56 kJ/mol (Tetens et al. 1984) and -24 kJ/mol (Wells & 

Jokumsen 1982) have been reported for other Antarctic species; if we assume the AH of B. 

marri to fall in this range, it may be inferred that Pro at in situ temperature of -1.5OC, 

calculated from the van't Hoff equation, would be in the range of 2.1 - 6.4 mm Hg (Table 

3.7). 

For haemoglobins of T. lepidorhinus, T. eulepidotus and P. hansoni (Fig. 3.7 to Fig. 3.9) the 

situation is very similar. For Hb of D. mawsoni we find a distinct influence of organic 

phosphates already between pH 8.0 and 7.5 and hardly any influence of Cl' (Fig. 3.10). For 

Hb of Pogonophryne sp.2 the affinity can only be predicted and is indicated with dotted lines 

(Fig. 3.13). 

For the narrow pH range which could be investigated in both haemoglobins of P. antarcticum 

(e.g. Hb2 in Fig. 3.12) it seems that effectors have no influence. 

The only real exception from the above outlined general Pattern is found in A .  mitopteryx. 

When measuring the effect of pH On the oxygen equilibrium curve of this haemoglobin, only 

a weak Bohr effect can be detected (Fig. 3.1 1). Both effectors, organic phosphates and Cl' 

ions, only slightly change the affinity. The Hill coefficient, indicating cooperativity, remains 

at values around 1.2 between pH values of 8.5 to 6.0, which means that cooperativity is very 

low. The apparent oxygen affinity at pH 7.5 and 20Â° is moderate with a PS0 value of 12.6 

mm Hg (Tab. 3.6). With effectors the affinity decreases slightly to a PSo value of 14.4 mm 

Hg at pH 7.5 and 20Â°C Corresponding values at in situ temperature of -1.5OC, assuming two 

different AH values (see above) are 2.05 rnm Hg and 6.4 mm Hg, respectively. 

The individual PsO values, Hill coefficient (n%) and Bohr coefficient (<l>=~logP~(/~pH) values 

for all investigated haemoglobins are summarized in Table 3.7. The highest affinity for 

oxygen (i.e. the lowest value for Ps0) was found for D. mawsoni and P. hansoni. 



Table 3.7: List of PS vaiues in [mm Hg], Bohr factors (@ = ~ l o g P w / ~ p H )  and HiU coefficients 

(n16) of haemoglobins. Upper row of vaiues is obtained without effectors, the lower row is ob- 

tained under influence of 3 mM IHP and 0.1 M NaCl. The Po, values were originally obtained at 

20Â° and pH 7.8. For the Hill coefficient the change with decreasing pH is presented. The maxi- 

mum Bohr factor usually occurred between pH 8.0 and 7.0. 

" = transformation under the assumption AH = -21 kJ/mol (Grigg 1967; di Prisco et al. 1988). 

= transformation under the assumption AH = -56 kJ/mol (Tetens et al. 1984), see text. 

Species P50 Pm ' 5 0  n U. 
(20Â°C (-l.SÂ°C (-l.SÂ°C 

Aethotaxis mitopteiyx 12.6 6.4 2.05 1.0-1.4 
14.4 7.3 2.35 1.4-1.7 

Pleuragramma antarcticum 19.9 10.1 3.24 2.1-1.5 
25.0 12.7 4.08 1.5 

Pagothenia hansoni 7.9 4.0 1.29 1.9- 1 .0 
31.6 16.0 5.15 1.9-0.7 

Trematomus eulepidotus 12.6 6.4 2.05 1.4-1.2 
32.4 16.4 5.30 2.0-0.9 

Trematomus lepidorhinus 10.0 5.1 1.63 1.5-0.7 
30.2 15.3 4.90 1.7-0.9 

Bathydraco marri 12.6 6.4 2.05 2.1-0.8 
33.1 16.7 5.40 1.7-0.8 

Pogonophiyne sp.2 17.4 8.8 2.84 1.5-0.9 
21.4 10.8 3.48 1.6-0.9 



Root effect studies 

In B. marri haemoglobin the 

effect of pH on the oxygen 

saturation indicated the presence 

of a strong Root effect, i.e. a 

large decrease of the 02-affinity 

and cooperativity at low pH 

values (Fig. 3.14). A dramatic 

fall to 50% was observed be- 

tween pH 8 and pH 7; the mini- 

mum (approx. 40 - 45%) was 

reached at pH 7.5 in the pres- 

ence of organic phosphates and 

at pH 6.0 in their absence. The 

inflection point occurred 

around the physiological pH of 

7.7. 

A similarly strong Root effect 

can be obsemed in the closely 

related species Bathydraco 

macrolepis and Racovitzia 

glacialis and in the nototheniid 

species Dissostichus rnawsoni 

(Fig. 3.15 to Fig. 3.19). 

All other species (except one) 

displayed a less strong, but still 

clearly expressed, response to 

pH changes in their haemoglo- 

bins. 

Fig. 3.14 to Fig. 3.16: Oxygen saturation of haemoglobin as a 
function of pH (Root effect). Haemolysate in the absence (D) or 
presence (+) of 3 mM IHP. 



Again we find the exception in 

the single haemoglobin of A. 

mitopteryx. When the influence 

of pH on the oxygen saturation 

of A. mitopteryx haemoglobin is 

recorded, no Root effect is pres- 

ent; i.e. no change of the Oy- 

affinity and cooperativity at all 

pH values investigated 

(Fig. 3.26). The 0,-saturation 

remains at 100% over a pH 

range of 8.5-6.5. 

There is a slight decrease down 

to 95190% at pH 6, probably 

due to an instability of the hae- 

moglobin molecule. Organic 

phosphates have no effects. 

Most of the studied haemo- 

globins display a decrease in 

oxygenation at pH 6.0 down to 

50160% without influence of 

effectors and down to 40145% 

under the influence of effectors. 

A particularly strong response 

to effectors can be observed in 

D. mawsoni and R. glacialis 

haemoglobin (Fig. 3.19 and 

Fig. 3.16), whereas the influ- 

ence is very weak in haemoglo- 

bin of Gerlachea australis 

(Fig. 3.17). 

D. mawsoni 

20 - 

Fig. 3.17 to Fig. 3.19: Oxygen saturation of haemoglobin as a 
function of pH (Root effect). Haemolysate in the absence (D) or 
presence (+) of 3 mM IHP. 

Pogonophryne sp.2 

O i  5:s 8:O &5 7:O 715 810 815 Q:Ã 
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When the plots of the two hae- 

moglobins of P. antarcticwn are 

compared it is obvious that the 

decrease in saturation with de- 

creasing pH is more distinct in 
0 Hbl, where vaiues as low as W 

40% are reached at pH 6.0 3 

(Fig. 3.24). In Hb2 the satura- @ 

tion at the Same pH still reaches 0 

60-65% (Fig. 3.25). This con- 

f i i s  the necessity to separate 
P. hansoni 

the two haemoglobins and study 
d5 610 615 7:0 7:s 810 815 9 

their oxygen binding pmperties PH 

individuaily. 

Fig. 3.20 to Fig. 3.22: Oxygen saturation of haemoglobin as a 
function of pH (Root effect). Haemolysate in the absence (D) or 
presence (+) of 3 mM IHP. 



P. antarcticum Hbl 

*I P. antarcticum Hb2 

Fig. 3.23 to Fig. 3.25: Oxygcn saturation of haernoglobin as a 
function of pH (Root effect). Hacrnolysate in the abscncc (0) or 
presence (+) of 3 rnM IHP. 



Fig. 3.26 to Fig. 3.28: Oxygen saturation of haemoglobin as a 
function of pH. Haemolysate in the absence (U) or presence (+) 
of 3 mM IHP. Note the Root effect absence in the upper panel. 
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A brief summary of the most importmt results concerning structural and functional studies 

is given in Table 3.8. For comparison published results are summarized and presented in 

tables in the Discussion. Selected data On b l d  Parameters from other members of the 

family Bathydraconidae are presented in Table 4.2 and from other members of the family 

Nototheniidae in Table 4.3. All available data On haemoglobin components and function of 

species not investigated in this thesis, are compiled in Table 4.4. 

Table 3.8: Haemoglobins of Antarctic fishes from the Weddell Sea. Oxygen binding and 

structurai components (partly from Kunzmann & di Prisco 1990). 
* CAE = Cellulose Acetaie Electrophoresis, (relation Hb lBb2  in brackets) 

** PAGE = PoIya~lamidgelelec~ophoresis, SDS = Sodiumdodezylsulfate 

Hb = haernoglobins, I = not investigated, - = no effect, + = slight effect, +t = normal effect, +++ = strong effect. 

Species Root Bohr ~b CAE* Globins 
effect effect PAGE-SDSa* 

Nototheniidae 
Aethotaxis mitopteyx 
Pfeuragramma antarcticum 
P. antarcticum Hbl 
P. antarcticum Hb2 
Dissostichus mawsoni 
Trematomus eufepidotus 
Trematomus lepidorhinus 
Trematomus scotti 
Pagothenia hansoni 

Bathydraconidae 
Bathydraco marri 
Bathydraco macrolepis 
Gerlachea austrafis 
Racovitzia glacialis 

Artedidraconidae 
Pogonophtyne sp.1 
Pogonophyne sp.2 
Pogonophqvte sp.3 

Macrouridae 
Macrourus holotrachys 

Anotopteridae 
Anotopterus pharao 
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Discussion and Conclusions 

It was the intention of this thesis to fiid links between haematological characteristics of 

extremely well cold-adapted fishes and their evolution and ecology. Therefore, it was chosen 

to focus On high-Antarctic species, On a broad range of different ecotypes and On blood 

samples drawn from alive, rested specimens. A careful selection of specimens was necessary 

to meet these requirements. Catch, maintenance in aquaria and blood sampling cause un- 

avoidable disturbance for any fish specimen. These problems are discussed in the next 

paragraph. 

STRESS 

Stress in general influences most haematological parameters (Blaxhall & Daisley 1973; 

Cobum & Fischer 19731, increases metabolism (Davison et al. 1988) and can even cause 

death of fishes. According to Wells et al. (1990) the most common haematological reactions 

On stress are a rapid and marked increase in haematocrit, erythrocyte swelling and increase 

in plasma viscosity. 

As outlined in the Methods section, the catch causes a considerable amount of stress for fish. 

The most careful ways to collect fish are most likely by Scuba diving or with baited traps or 

hmk and line. Fishes caught by trawls are usually not in good condition and mortality during 

or right after the catch is high. h s s e s  can be considerably decreased, when the hau1 duration 

and particularly the 'out of water' period is kept short for the fishes. Since most of the spe- 

cies investigated in this study cannot be attracted by bait, there was not much choice in 

catching methods. More than 30 specimens have been kept in aquaria for several years now 

and feed and grow. This demonstrates that catch and the subsequent handling and mainte- 

nance was tolerable at least for most of the specimens used in this study. 

A recovery period of 48 h is regarded to be sufficient by most authors (e.g. Wells et al. 

1984; Davison et al. 1988). Others argue that even 72 h a~ not enough for fish to return to 

their normal resting metabolism (Weiis et al. 1990). Metabolism of Antarctic fish maintained 

in tanks or aquaria will most likely never recover totally. In this study a recovery period of 

at least 48 hours was allowed, in most cases more (except for a few specimens, See Materials 

and Methods section). It is assumed that this may allow an approximation of what is called 

'routine metabolism' and stable haematological values. 

It is worth to stress that most of the published data On b l d  Parameters (including the data 
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from this study) were obtained On b l d  samples drawn by acute techniques. Thus, a corres- 

ponding stress effect (which cannot be quantitatively assessed) On blood parameters cannot 

be excluded. Wells et al. (1990) argue that the only reliable means of sampling blood from 

resting, undisturbed fish is from a chronicaily implanted cannula. However, laboratory 

expenments reveai increases in b l d  pressure as response to simply touching a cannulation 

tube, even when the tube-end is far away from a fish kept in complete darkness (Rankin, 

pers. comm.). This demonstrates that stress is not avoidable with presently known techniques. 

Avoidable sources of error in the collection and treatment of blood samples were taken into 

account, also conceming anaesthesia (E3aumgarten-Schuhmann & Piiper 1968; Wells et al. 

1984), anticoagulation (Blaxhall 1973; Barhm et ai. 1979; Hille 1982; Korcock et al. 1988) 

or routine haematology (Blaxhall & Daisley 1973; Cobum & Fisher 1973). All above 

mentioned authors claim that stress in generai increases values for haematocnt, haemoglobin 

and red b l d  cell number. Since in this thesis the low values are emphasized in some cases, 

it should be kept in mind that these values would even be lower in totally undisturbed fish. 

In the extensive compilation of (non-Antarctic) fish data in Coburn & Fischer (1973) and in 

data for other vertebrates (Schmidt-Nielsen 1986) we find correlations between adaptations 

in the respiratory physiology and environmental conditions andor ecology of the investigated 

species. Vanous haematological parameters can directly be correlated with factors such as 

activity of a species or ambient oxygen contents. The parameters of the present study were 

used to test the hypothesis that these correlations also exist in high-Antarctic fish species. 

A general problem of these correlations is that we know only little about the mode of life or 

activity of most Antarctic fish species. Authors frequently limit their descriptions to state- 

ments like 'sluggish, benthic, scavenger' or 'active, fish predator' (e.g. Tetens et al. 1984; 

Macdonald et al. 1987). Therefore, we have to rely On indirect information for instance about 

fmd (Schwarzbach 1988) or muscle physiology (Johnston 1989) or On own observations from 

aquana or remote camera vehicles. An overview of the few available data On the mode of life 

of species investigated in this study is presented in Table 4.1. 

Red blood cell dimensions 

Red blood cells of active non-polar fishes were found to be smaller in comparison to more 

sluggish species (Wells & Baldwin 1990). Data of this study (Table 3.1) suggest that this 
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Table 4.1: Summary of available data On rnode of life based On activity, habil, food and lipid 
incorporalion from publishcd sourccs, Own observations from aquana and/or rcmote video c m c r a  
vchicles arc included. + fish = including fish; I = Macdondd et ai. 1987; 2 = Tetens et al. 1984; 3 = Johnston et al 
1989; 4 = Huhld 1991; 5 = Schwarzbach 1988; 6 = Ekau 1988; 7 = Kun7mann 1990; 8 = dl h s c o  pers. w m . ;  9 = 
Wclls CL d .  1980; I0 = aquxia + viden observations; 1 I = Hureau et al. 1990; I2 = Eastman & De Vries 1982; I3  = 
Daniels 1982; 14 = Permitin & Tarverdiyeva 1978 

Spcclcs Actlvlty Habit Indirect Aquaria 
(rcfcrcncc) lnforrnatlon (food) Video 

Notuthcniidnc 
Aelholuri.~ milopleryx sluggish ? pelagic, bentho- pelagic food, lipid deposits extrernely 
(4, 6. 10. 12) pelagic, >500 m sluggish 
P l e u r a g r m a  anlmcticum sluggish holopelagic, 4 0 0  m pelagic Food, lipid deposits sluggish 
(3, 4, 7, 10, 12) 
Dis.sos~ichus mwsoni 
(2. 4. 8. 10. 12) 
, . Iremlomus cenlrotwlus 
(1. 4. 5, 10) 
Tremlomus eulepidolus 
(4, 5, 10) 
Trem~omus  lepidorhinus 
(4. 5. 10) 
Tremtomus scol~i 
(5, 13) 
Pagothenia hamoni 
(4, 9, 10) 

Bathydraconidae 
Bathydraco m r r i  
(5, 10) 
Bathydraco mcrolepis 
(5, 10) 

Gymnodraco acuticeps 
(1. 9, 10) 
Racovitzia glaciaiis 
(5, 10) 
Gerlachea austrdis 
(5, 10) 

Artedidraconidae 
Pogomphryne sp. 
(4, 5, 10) 

Channichthyidae 
Neopagetopsk ionah 
(14) 
Chiomdraco myersi 
(5. 6 ,  10) 
Cryodraco aniarcticw 
(5, 10) 
Dacodraco hwtteri 
(5 ,  10) 
P agetopsk m r o p t e r w  
( 1 3  5) 
P agetopsis mculatus 
(5) 
Chionokthyscus dmiiii  
(11) 

seasonal migrations 
active benthopelagic, ben- Fish predator, Iipid depos i~  moderately 
moderate thic, 300-500 m caught by handlines 

benthic, shallow, caught in traps 
30-300 m 

active pelagic, 200-500 rn pelagic Food 

benthic, 200-500 m benthic fmd  

2W-5W rn 

active benthic, 100-500 

benthic, >700 rn 

benthic, >700 m 

cryopelagic 
anchor-ice 
benthic 

benihic 

sluggish benthic 

active 

benthic, s h d o w  

benthic fmd, generalist 

predator, caught in traps 
fcod generaiist 

prefers deep and cold 
water 
prefers deep and cold 
water 
large benthic prey + Fish 

cmstacean predator 
caught by handlines 
rnotile benthic focd 

motile benthic Focd 

benthic Food 

pelagic food 

pelagic food + fish 

pelagic f m d  + fish 

pelagic Fmd + fish 

pelagic Fmd + fish 

pelagic fmd  

5W m, down ta 
2003 m 

active 
modera[cly 
active 
active 

sluggish 

sluggish 

moderately 
active 

ptential 
for activity 
potential 
for activity 

moderately 
active 
sluggish 

sluggish 

sluggish 

sluggish 

sluggish 

moderately 
active 
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correlation does not apply to Antarctic fishes, since both active and sluggish species have a 

similar red b l d  cell size. Data from Tyler (1960), Everson & Ralph (1968) and Hureau et 

al. (1977) indicate, however, that high-Antarctic species might have smaller red blood cells 

(RBC) than sub-Antarctic species. The average RBC size for seven red-blooded sub-Antarctic 

species is reported to be about 15 pm (Everson & Ralph 1968). In the present study most 

high-Antarctic species indeed have smailer cells. 

A clear difference found in the present study is the in general smaller size (average = 7.2 

pm) of 'erythrocyte-like' cells in haemoglobinless fishes. This is confirmed by data from 

Hureau et ai. (1977), who report an average size of 9 pm (including some sub-Antarctic 

icefish species). 

Values known from temperate teleost species are between 5 pm and 18 pm (Cobum & 

Fischer 1973) and all Antarctic species (including the haemoglobinless ones) are within this 

range. Therefore, it is concluded that the red b l d  cell size does not have any zoogeographi- 

cal significance. 

Haematocrit (Hct) 
Although haematocrit is the most frequently used parameter in fish haematology and patholo- 

gy, it is still the most difficult parameter to draw conclusions from (e.g. Cobum & Fischer 

1973). This is mainly due to the following facts, which should be kept in mind for the 

interpretation: 

a) variability in Hct is large in various fish species from all latitudes 

b) applied methods differ considerably (particulxly before critical reviews On this subject 

were published) 

C) the number of circulated red blood cells can easily be increased due to stress by releasing 

cells from the spleen 

d) red blood cell swelling increases haem:itocrit 

e) response to stress is very individu:ll 

f) i n  Antarctic fishes the differeiice i n  iictivity between very active and very sluggish species 

is not ;is pronounced kis e.g. between ;i tuna and a toadfish. 

In  spite of thcse difficulties, sonie clear tendencies were identified. In very active species, 

such X t i m  iind iiiackerel (SO-S3%, Cobum & Fischer 1973; Larsson et al. 1976) or horse- 

mackerel (46-SO%, Larssoii et 31. 1976; Putnam & Freel 1978) we find high haematocrits. 

The h:iemi~t(~rit of teri1perate fishes is reportedly close to 29 for inactive and 39-43 for active 

species (Love 1980). 
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Such a clear relationship between Hct and activity have not been found in data from polar 

fishes. Results of the present study show a broad r a g e  of haematwrit values (Table 3.21, but 

do not exceed 25%, except for a single, rather stressed specimen of Pogonophryne. Some 

active species, such as Dissostichus mawsoni, have a high haematwrit (Table 3.2 and 4.31, 

but other active species such as Pagothenia hamoni do not. The Same applies vice-versa to 

the sluggish species of this study, where two species of similar low activity level, Bathydraco 

marri and B. macrolepis have low and high haematwrits, ~spectively (Table 3.2 and 4.2). 

Table 4.2: Blood Parameters and oxygen binding properties of memberx of the 
family Bathydraconidae. 1 = not investigated; Hct = haematocnt; RBC = numkr 
of red blood cells; Hb = haemoglobin concentration; Hb comp. = haemoglobin 
components 

Species Hct RBC Hb Hb Root Bohr 
(reference) [%] [1012/1] [dl] comp. effect effect 

V. inkcipinnis 
(Hurezu 1977) 

P. charcoti 
(Hureau 1977; di Prisco 
et ai. 1988, 1990) 

P. georgianus 
(Everwn & Raiph 
1968) 

G. acuticeps 
Wei ls  & ai. 1980; di 
Prisco et ai. 1990) 

C.  mawsoni 
(di k c o  et ai. 1990) 

G. australis 

R. glacialis 

B. macrolepis 

B. marri 

Other authors report values in the range 19-38% for Antarctic fishes (Kooyman 1962; Grigg 

1967; Everson & Raiph 1968; Rakusa-Suszczewski & Z&owski 1980; Weils et ai. 1980). 

From temperate and tropicai teleosts a haematwrit range of 15~53% is reported (Cobum & 

Fischer 1973; Love 1980). Apart from the observation that haematwrit in Antarctic fishes in 

general is low and with respect to the influence of Stress, it is concluded that this Parameter 

does not ailow any conclusions On the ecology of Antarctic fishes. 
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Number of red blood cells (RBC) 
The number of red b l d  cells, besides haematocrit, is one of the most frequently investigat- 

ed Parameters in b l d  physiology of fish. A range of 1-2*1Ol2/l is reported from temperate 

teleosts (Love 1980). Active pelagic species can reach values as high as 4*l0l2/l (Cobum & 

Fischer 1973), which is close to values known for humans (5*10l2/l, Hallmann 1980). In 

contrast to that, less active species have lower RBC numbers. The validity of this relationship 

has previously been tested for Antarctic fishes, but only for a very limited number of 

different ecotypes. 

The Rl3C values presentd in this study (Table 3.2) are within the range of 0.4-1.2*1012/l, 

reported for Antarctic fishes by other authors (Tyler 1960; Kooyman 1962; Everson & Ralph 

1968; Hureau et al. 1977; Rakusa-Suszczewski & Zukowsky 1980; Wells et al. 1980). Only 

considering the 'active' fishes in Table 3.2, such as Dissostichus mawsoni or Trematomm 

eulepidotus, we find them at the upper end of the range. This is in good agreement with the 

above mentioned relationship. Two species with little (Macrourus holotrachys) or unknown 

activity level (Trematomus scotti) have rather high values, too. However, since M. holo- 

trachys is a non-endemic, bathypelagic species (often caught dead) and only a few samples 

of stressed T. scotti were available, these data are not suited for comparison. 

On the other hand we find two sluggish species, Pleuragramma antarcticum and Aethotaxis 

mitopteryx, at the lower end of the range (Table 3.2). Species of little or moderate activity 

also have low RBC numbers (Table 3.2). Other authors (Grigg 1967; Hureau et al. 1977) 

confirm these values for some additional species such as Trematomus centronotus or Pago- 

thenia bernacchii (Table 4.3). 

These findings demonstrate that, although a general, evolutionary trend of reduction i n  cell 

Count and haemoglobin content is expressed in all endemic Antarctic fishes (sec Introduc- 

tion), the relationship between red b l d  cell number and activity still holds. 

Haemoglobin content (Hb) 

In temperate and tropical species, values of 62-73 gA have been found i n  inactive tish and 

104-127 in some active scombnds (Love 1980). This has led to the hypothesis of a 

positive relationship between haemoglobin and activity, i.e. increasing haemoglobin coritent 

with increasing activity f h v e  1980). This hypothesis seems also to apply to polar fistics. 

Arctic species, for instance Cover a range of 28 &/I for a most probably inactive liparid, [o 0 8  

g/l for reasonably active species (Scholander & Van Dam 1957). 



Table 43: Compilation of blood Parameters and oxygen binding properties of members of the family Nototheniidae. 
/ = not investigated; +- = preliminary data; " = at environmental ternperature of -1.8"C; ' = originally rneasured at 20Â°C adjusted with AH=-561-21kJ/mol, see text. 
Hct = haematocrit; RBC = number of red blood cells; Hb = haernoglobin concentration; MCHC = rnean corpuscular haemoglobin concentration; MCH = mean cellular Hb; 
02CC = canying capacity for 0,; Pm = 0,-pressure for 50% saturation of Hb; <I> = Bohr coefficient &log P&pH; R = Root effect; B = Bohr effect 
1 = Hureau et al. 1977, 2 = Everson & Ralph 1968, 3 = Wells et al. 1980, 4 = Grigg 1967, 5 = Wells & Jokumsen 1982, 6 = Tetens et al. 1984, 7 = D'Avino & di Prisco 
1988, 8 = Kunzmaim & di Prisco 1990, 9 = di Prisco et al. 1988, 10 = Qvist et al. 1977) 

Species mode of Hct RBC Hb MCHC MCH 02CC Hb PM* <& R B 
(reference) life [%I [1012nl [ ~ I I  [pgl [%I cornp- [mmHgl [*-!I 

P. bernacchii 
(1, 2.3.4, 5, 6, 7, 8) 

P. hansoni 
(1. 3.4. 5,  7, 8) 

P. borchgrevinki 
(3, 4,5, 6 ,  7) 

A. rnitoptetyx 

P. antarcticurn 

benthic, 
sluggish 

benthic, 
sluggish 

benthic, 
active 

cryo- 
pelagic, 
active 

bentho- 
pelagic, 
active 

pelagic, 
sluggish 

pelagic, 
sluggish 
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However, data for Antarctic species had hitherto been limited to a few species and are in 

some cases contradictive. Several authors (e.g. Grigg 1967; Everson & Ralph 1968; Qvist et 

al. 1977; Wells et al. 1980; Wells & Jokumsen 1982; Tetens et al. 1984) investigated 

haemoglobin concentrations. In the group of active and/or moderately active species we find 

values from 33 to 64 g/l for Dissostichus mawsoni, 28 to 56 g/l for Pagothenia hansoni and 

30 to 48 g/l for Trematomus borchgrevinki (Table 4.3). In this range, there is not much of a 

difference to sluggish species, such as Pagothenia bernacchii and Trematornus centronotus, 

where values as high as 50 g/l were found and lower limits are in the range 21-30 g/l (Table 

4.3). In this context it should be kept in mind that active (or facultative active) species seem 

to have the capability to mobilize additional erythrocytes (and thus haemoglobin) and 

enhance oxygen delivery On demand, while their resting haemoglobin values are comparative- 

ly low (Wells et al. 1990). 

The results of the present study (Table 3.2) clearly differentiate between active species, such 

as D. mawsoni and Trematomus eulepidotus, with high haemoglobin contents around 47 g/l 

and sluggish species, such as Pleuragramma antarcticum and Aethotaxis rnitopteryx, with low 

values around 27 g/l. Species of moderate activity have values in between. Moreover, these 

results show less variability in haemoglobin content between species than values for red 

blood cell number and haematocrit. 

These findings confirm the above mentioned hypothesis of a positive relationship between 

haemoglobin content and activity. Due to their low haemoglobin content it could be conclud- 

ed that bathydraconids are the least active group amongst red-blooded species. Their haerno- 

globin values (20-30 g/l, Table 3.2) are clearly lower than values in other families. Unfortu- 

nately, no reliable observations on activity are published for these species. Only indirect 

information, like "pelagic and motile food" (Schwarzbach 1988), and own observations from 

aquaria give hints about their activity. 

Obviously, this haemoglobin-activity relationship has lirnits. Channichthyids, without haemo- 

globin, can still be relatively active (e.g. Kock 1985). 

Derived Parameters (MCHCIMCH, O,CC, PC) 

The erythrocyte indices 'mean corpuscular haemoglobin concentration' (MCHC) and 'mean 

cellular haemoglobin' (MCH) have been identified as the most reliable blood Parameters in 

vertebrates (Cobum & Fischer 1983). Few authors have attempted to correlate MCHC of 

temperate (Larsson et al. 1976), tropical (Putnam & Freel 1978) and Antarctic (Wells et al. 

1980) fishes with activity and have not found a correlation. Instead, Wells et al. (1989) found 

a correlation of MCHC with latitude. They hypothesized that reduction of MCHC is the prin- 
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cipal mechanism to reduce haemoglobin, rather than through reduction in haematocrit and 

therefore may be an adaptation to low temperatures. When their data from nine Antarctic 

species are combined with results of the additional thirteen species studied here (Table 3.2), 

the correlation is still valid, except for the upper limit which has to be extended from 160 to 

200 g/l for polar species. However, it is still well below the upper limits given for temperate 

(300 g/l) and tropical (370 g/l) species. 

What is behind the 'strategy' to reduce haemoglobin via reduction of MCHC? A possible 

explanation could be that thus the probability to find a red blood cell at a given time and 

place in a body is much higher and a more even dismbution of oxygen to the tissues is 

ensured. This indeed makes more sense than decreasing haematocrit and retaining only few 

cells densely packed with haemoglobin. 

Channichthyids indirectly confirm this 'strategy'. They have completely reduced their 

haemoglobin (MCHC = O), but still possess erythrocytes in significant amounts as the present 

study could demonstrate in so far uninvestigated species (Table 3.3). This raises questions 

about other possible functions of erythrocyte-like cells in these fishes. A reasonable explana- 

tion takes enzymatic functions into consideration, like for instance the maintenance of an 

appropriate acid-base balance in the blood via carbonic anhydrase (Wells et al. 1980). 

Another example is a recent investigation which revealed a significantly higher glucose-6- 

phosphate dehydrogenase (G6PD) activity in icefish blood cells, so that due to their increased 

blood volume the total G6PD activity in icefish blood is similar to that in red-blooded fishes 

(di Prisco 1985; di Prisco & D'Avino 1989). 

In this context it is interesting to look into oxygen transport in haemoglobinless fishes, where 

the plasma conmbution (PC) reaches 100%. Channichthyids can only partially compensate 

the low oxygen carrying capacity (0,CC) of their blood. Although they have a higher volume 

of blood (2-4 fold; Hemmingsen & Douglas 1970) in combination with an increased heart 

stroke volume (9-15 fold; Johnston et al. 1983) the oxygen transported per unit of time still 

does not reach that of red-blooded Antarctic species. The consequences and the role of 

icefishes in general are resumed again later in a paragraph about evolutionary significance. 

The values for 02CC and PC found in this study for their red-blooded relatives (Table 3.2) 

clearly reveal that active species, such as Dissostichus mawsoni and Trematomus eulepidotus, 

rely mainly (>90%) On haemoglobin for their oxygen supply. They have the highest 0;- 

carrying capacities (7.1 and 7.0%) and lowest plasma contributions (8.5 and 8.6%) obsemed 

among the 19 red-blooded species studied. 
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Blood gases 

Fishes in generai have very low partial pressures of CO, (PCO,), when compared io e.g. 

mamrnals. Mean arterial and venous ranges observed in non-polar fishes are 1.3-2.9 mm Hg 

and 2.0-4.6 rnm Hg, respectively (Piiper & Schuhrnann 1967). Except for two species, of 

which only highly stressed specimens were available, these limits are not exceeded in this 

study (Table 3.4). 

However, severai venous PO, values of this study (up to 78 mm Hg) exceed the range 

reported from literature for non-polar fishes (10-30 mm Hg) and reach arterial values (50-1 10 

rnrn Hg; Hughes 1964; Piiper & Baumgarten-Schuhmann 1968). A possible explanation for 

this deviation and the high variance observed in all data on blood partial pressures (including 

those of this study) is proposed by Piiper & Schuhmann (1967). They refer io regulatory 

processes, such as varying water shunt flow across gill filaments, which substantially changes 

arterial partial pressures or varying blood shunt flow in tissues, which considerably changes 

venous partial pressures. Therefore, much more data On blood gases are needed, particularly 

in combination with measurements in gills and tissues. 

Unfortunately, hardly any data are available On blood gases of red-blooded Antarctic fishes. 

The data of the present study are a first step. Since they were obtained on caudal venous 

blood only, they represent only part of the oxygen conditions. Arterial values and additional 

rnixed venous rneasurements of blood entering the gills are needed. These measurements 

would require much more experimental effort On each specimen. The intention of this thesis, 

however, is to investigate a broad range of different ecotypes. 

The oxygen transport System of icefishes is not so efficient as in red-blooded fishes; they 

cannot withstand exposure to environmental oxygen levels below 40-50 mm Hg (Holeton 

1972), they rely heavily On additional cutaneous respiration (up to 40-50%; Wells 1987) and 

they have to maintain a high diffusion gradient (i.e. difference in partial pressure) to guaran- 

tee sufficient 0, supply to the tissues. The results of this thesis (Table 3.4) indicate that they 

can maintain higher venous PO, values (60-75 rnrn Hg) in comparison to their red-blooded 

relatives (30-60 mm Hg). The highest arterial PO, observed in an icefish is 134 mm Hg 

(Holeton 1972), which allows a high diffusion gradient even when venous PO2 is as high as 

found in this study. According to tissue needs the venous PO, can drop to 6 mm Hg, the 

lowest value ever reported for an icefish (Holeton 1972). 
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HAEMOGLOBIN STRUCTURE AND EVOLUTION 

Structural studies on haemoglobin are necessary for a full understanding of its functional 

behaviour. Therefore, studies On haemoglobin multiplicity and molecular weight were 

perforrned on most of the investigated species. A detailed analysis of the primary structure 

(amino acid sequences) reveals the evolutionary development of the haemoglobin molecule 

and thus ailows conclusions on the species level. As outlined in the Materials and Methods 

section, the amino acid sequence has so far only been established for two species, Aethotaxis 

rnitopteryx and Bathydraco rnarri. 

Haemoglobin multiplicity 

Including results of this study (Table 3.2 and 3.8), the haemoglobin multiplicity has been 

investigated in seven bathydraconid species: six have one haemoglobin and only one has two 

(Table 4.2 and 4.4). Many species of the farnily Nototheniidae are characterized by the 

presence of two haemoglobins, one major and one rninor component (di Prisco 1988; 

D'Avino and di Prisco 1988; di Prisco et al. 1990). The latter is suggested to be an evolu- 

tionary remnant. The evolutionary trend, from multiple haemoglobins in temperate species via 

one single or major haemoglobin in Antarctic red-blooded fishes to a total lack of haemoglo- 

bin in channichthyids, has been discussed previously 

by Wells et ai. (1980). If we assume that chann- 

ichthyids are indeed the most advanced group within 

the Notothenioids then bathydraconids, which in 

generai have only one haemoglobin, would be one 

step below. This conclusion is strongly supported by 

haematologicai data of the present study (cf. Page 

67) and morphological investigations by Iwami 

(1985). The average number of red blood cells and 

the average haemoglobin contents were found to 

decrease in the order nototheniids - artedidraconids - 
bathydraconids - channichthyids (Table 3.2 and 

3.3). In a phylogenetic tree by Iwami (1985) based 

On morphological investigations, bathydraconids are 

in fact one 'branch' before channichthyids (Fig. 4.1). 

Prirnary structure (amino acid sequence) 

Fig. 4.1: dadogram of notothenioid evo- 
lution frorn Iwami (1985) and Eastman & 
Grande (1989). Note bathydraconids and 
channichthyids in the top branch. 

The large number of published arnino acid sequences of various haernoglobins, including a 

few non-polar fish species (e.g. Kleinschmidt & Sgourus 1987) indicates that in this protein 
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the primary structure is highly conserved during evolution. Conservation is most expressed 

in domains of structural importance, including residues known to be invariant in vertebrate 

globin chains (Dickerson & Geis 1983). 

Results of the two species of the present study (Bathydraco marri and Aethotaxis mitopteryx; 

Fig. 3.4 and 3.5) and investigations on five additional Antarctic species (D'Avino & di Prisco 

1988; di Prisco et al., in press) suggest that the above mentioned findings apply to Antarctic 

fishes as well. All invariant residues were found to be present (see Results section). The 

similarity in residues between Antarctic and non-polar fishes with completely different mode 

of life and taxonomic category, such as trout or carp, still reaches some 60% (Table 3.6). 

This clearly demonstrates the conservative nature of haemoglobin structure. 

Comparing sequences within one taxonomic category reveals higher similarity between 

species than comparing sequences of different taxonomic categories. Even a tuna and the 

Antarctic species of this study, which all belong to the taxonomic order Perciformes, have 

higher similarities (75 and 79%, Table 3.6) than e.g. trout and the two Antarctic species (59 

and 63%). Data from five additional species (di Prisco et al., in press) confirm these findings. 

Although the two species of this study (B. marri and A. mitopteryx) belong to different 

families, the similarity in sequence of their haemoglobins is much more pronounced (84% for 

the a chain and 80% for the Ã chain; Table 3.6) than between either of the two and any non- 

polar fish of a different farnily. This is an indication that the evolutionary distance between 

different fish families is less pronounced within the endemic Antarctic fish fauna. 

Although the structural results of this study can be discussed more detailed, parricularly the 

role of individual residues, this would lead beyond the frame of this thesis. These aspects 

(including results of this study) are discussed in two Papers, which are in preparation (Caruso 

et al.; D'Avino et al.) and in an excellent reviewing discussion by di Prisco et al. (in press), 

where the replacement of particular residues, their relevance for functional effects and the 

role of the minor haemoglobin components are elucidated in detail. The more general 

conclusions drawn from results of the present study are summarized below. 

The high degree of sequence similarity within Antarctic species may be a sign of the strong 

evolutionary pressure to which Antarctic fishes have been exposed south of the Antarctic 

Convergence. It could also be that it is a result of no or only weak evolutionary pressure on 

all Antarctic fish species after the separation of Antarctica. The low degree of identity with 

non-Antarctic species and the high degree of identity among Antarctic fishes of different 

families reflect the long isolation of the endemic Antarctic fish fauna. Only when nlore 
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sequences of polar fish haemoglobins are known, we shall hopefully gain insight into the 

molecular basis of cold adaptation and the phylogeny of these fishes. 

HAEMOGLOBIN FUNCTION AND LINKS T 0  ECOLOGY AND EVOLUTION 

Functional properties of haemoglobin respond to evolutionary selective pressure (Wells et al. 

1989) and reflect adaptations to the metabolic rate andor to the ambient oxygen pressure 

(Riggs 1970). Active, pelagic fishes, for example, have haemoglobins with a low 0,-affinity 

and large Bohr and Root effects (see Introduction). Low ambient oxygen pressures corre- 

spond to high oxygen affinities and vice-versa. Due to the above mentioned sensitivity of 

functional properties of haemoglobin to environment or m d e  of life, we would expect 

adaptations in the species investigated in this study. 

Bohr and Root effects 

Briefly surnrnarized the Bohr effect is the influence of Protons on the 0,-affinity of haemo- 

globin, i.e. a shift of the oxygen equilibrium curve with changing pH (see Introduction). It 

is generally accepted that its biological significance is to perrnit a fine regulation of oxygen 

supply to the tissues, thus enabling a wide scope of activity. This leads to the conclusion that 

species relying only on haemoglobins with no or weak Bohr effect have a limited scope of 

activity. 

In this study normal or strong Bohr effects were found in all investigated species, except in 

Aethotaxis mitopteryx, where the Bohr effect was only very weak (Table 3.8). Strong Bohr 

effects were found in haemoglobins of five species (Dissostichus mawsoni, Pagothenia 

hansoni, Trematomus eulepidotus, T. lepidorhinus, Batkydraco marri); their Bohr coefficients, 

particularly under the influence of effectors, are all below or close to -1 (Table 3.7). These 

findings are in line with what is known about the ecology of the species. Three species (D. 

rnawsoni, P. hansoni, T.  eulepidotus) are known to be active (Wells et al. 1980, Hubold 

1991), T. lepidorhinus is poorly described, presumably of moderate activity (Hubold 1991) 

and the ecology of B. marri is described in more detail below. Due to their activity these 

species rely on a well developed regulatory System of oxygen supply to tissues and have a 

great scope for the additional supply of oxygen On demand. Moreover their capacity to 

withstand or recover from hypoxia is large. This is supported by the haematological results 

of this study (Table 3.2): their values for the oxygen carrying capacity are at the upper end 

of the range. 
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All species with normal Bohr effect (Pogonophryne spec.2, Pleuragramma antarcticum; 

Table 3.8) or only weak Bohr effect (Aethotaxis mitopteryx; Fig. 3.11) are known or assumed 

to be sluggish (Ekau 1988, Kunzmann 1990, Hubold 1991). This is in good agreement with 

haematological data in Table 3.2. These species have comparatively low numbers of red 

blood cells, haemoglobin concentration and oxygen carrying capacity. The relation of blood 

characteristics to the ecology of A. mitopteryx is described in more detail below. 

Another important information from Bohr effect studies is the oxygen affinity of haemoglo- 

bin (i.e. Ps0 values). Oxygen affinities can to a certain degree reflect ambient oxygen con- 

centrations. Since in Antarctic waters oxygen concentrations are generally assumed to be 

high, the oxygen affinities of Antarctic fish haemoglobins should be uniformly low. The 

results of this study (Table 3.7) and of other authors (Macdonald et al. 1987) indicate indeed 

low oxygen affinities for most of the investigated species in comparison with known values 

for species well adapted to low oxygen concentrations. This marks a certain dependency on 

well-oxygenated waters (Macdonald et al. 1987). However, oxygen affinity values of individ- 

ual species can be comparatively high, as for instance in the moderately active predator Dis- 

sostichus mawsoni (Table 3.7) with a very low (i.e. high 0,-affinity). This species is 

known for vertical migrations, where different water bodies with considerably less oxygen 

(see Introduction) can easily occur. In this case a haemoglobin with high oxygen affinity 

would be of advantage. 

In contrast to the Bohr effect, the functional relevance of the Root effect (in fact an exagger- 

ated Bohr effect) is still unclear. Since all Antarctic notothenioids lack a swimbladder, the 

only remaining oxygen secreting structure known so far is the choroid rete in the eye. The 

eye usually has a very high rate of 0, consumption like the brain of which it is an extension 

(Riggs 1979). But unlike mammalian eyes, retinal tissue in fish eyes is poorly vascularized 

and depends On the diffusion of 0, over substantial distances. It has been postulated that 

Root effect haemoglobins in fishes without swimbladder are always associated with the 

occurrence of a choroid rete. 

This hypothesis is confirrned by all 16 Antarctic species of the present study. As shown in 

the results section of this study (Table 3.8), the Root effect is fully operative in all investigat- 

ed Antarctic species, except for Aethotaxis mitopteryx. This corresponds well with findings 

on a number of additional species (Table 4.4), which all show Root effects in their haemo- 

globins, except for Gymnodraco acuticeps (di Prisco et al. 1990). An extensive study on 

ocular morphology (Eastman 1988 and pers. comm.) revealed that all investigated species 

have a well developed choroid body, except the two species without Root effect haemoglo- 

bins, A. mitopteryx and G. acuticeps. 
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Table 4.4: Summary of haemoglobin characterization of Antarctic fishes 
(from di Prisco et al. 1990 and unpublished). Hb = haemoglobins, CAE = 
Cellulose Acetate Electrophorcsis, AP = Antarctic Peninsula, RS = ROSS Sea, 
/ = not investigated 

Species Origin Hb Bohr Root 
CAE effect effect 

Nototheniidae 
Notothenia coriiceps 

neglecta 
Notothenia rossii 
Notothenia gibberifrons 
Notothenia nudifrons 
Notothenia larseni 
Pagothenia bernacchii 
Pagothenia borchgrevinki 
Trematomus newnesi 
Trematomus nicolai 
Trematomus centronotus 
Trematomus loennbergi 

Bathydraconidae 
Parachaenichthys charcoti 
Gymnodraco acuticeps 
Cygnodraco mawsoni 

Harpagiferidae 
Harpagifer antarcticus 
Artedidraco skottsbergi 
Harpagifer velifer 

Zoarcidae 
Lycenchelys nigripalatum 
Rigophila dearborni 
Austrolycichthys brachy- 

cephalus 

Although the present study cleariy Supports the existente of a correlation between Root effect 

and choroid rete, it is difficult to explain why most Antarctic fishes should rely so heavily 

on visual perception. This is even more surprising when considering the light situation under 

closed ice andfor the presence of icefishes (with no haemoglobin, therefore no Root effect 

and without choroid rete) in the same habitat. Maybe the release of small amounts of oxygen 

via Root effect is needed elsewhere, for instance into other hollow Organs such as intestine 

or fat tissue, thus dramatically increasing the buoyancy, as proposed by di Prisco et al. (1988; 

in press). 

Functional aspects und activity level 

For a detailed discussion of functional properties of haemoglobins and its ecological signifi- 
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cance it is convenient to select representative examples. In the present case, where functional 

results of 16 species (Table 3.8) need interpretation it is appropriate to choose two extremes. 

Therefore, the haemoglobins of Bathydraco marri with a strong Root and a well-pronounced 

Bohr effect and of Aethotaxis rnitopteryx with no Root and very weak Bohr effect were 

selected. 

Bathvdraco marri: Haemoglobin of B. marri has strong Root and Bohr effects (Fig. 3.6 and 

3.14) with a large degree of cooperativity (n%, Table 3.7). The oxygen affinity (P5o, Table 

3.7) is arnongst the lowest values found in this study. Haematology reveals large erythrocytes 

(Table 3.1) and moderate values for the erythrocyte Count, haemoglobin content and oxygen 

carrying capacity (Table 3.2). Results for other bathydraconids of this study are very similar. 

How are these results related to the mode of life and activity of B. marri ? 

In the following, the few data available from published sources on distribution and activity 

and from own observations are combined in the attempt to forrnulate a hypothesis about the 

possible lifestyle and evolution of bathydraconids. 

Although 'dragon fishes' play only a minor role in the eastem Weddell Sea (e.g. at Vestkapp 

6% by numbers), their occurrence in catches reaches 16-29% by numbers in the more 

southem Gould Bay. During 'EPOS leg 3' they were caught in deeper water (>700 m), but 

in more northerly regions around Halley Bay (Hureau et al. 1990, and own observations). B. 

marri and B. macrolepis are known to occur at least down to 1150 m (Ekau 1988) and 

Andriashev (1965) states that some members of the genus Bathydraco occur even down to 

2600 m. The percentage of bathydraconids in catches from the eastern and southern Weddell 

Sea increases with increasing depth below 500 m. 60% by numbers of all fishes caught 

below 700 m are bathydraconids and 50% by numbers of all bathydraconids caught, occur 

below 700 m (Schwarzbach 1988). 

With the help of cluster analysis Schwarzbach (1988) found that bathydraconids are charac- 

teristic for the area of the Filchner depression, which is a deep trench running from the 

Filchner ice shelf to the continental slope. The prevailing water body is Ice-Shelf-Water 

(ISW) with temperatures as low as -2.2O C and salinities of 34.6-34.7%0 (Hellmer & Bersch 

1985). The relatively high abundance of bathydraconids in the Gould Bay, which is adjacent 

to the Filchner depression, could be due to the extremely low temperatures of -2.0 to -2.2' 

C, as proposed by Ekau (1990), or to the high pressure or a combination of both. 

How far the influence of high pressure is involved, is difficult to assess. In a recent publica- 

tion on hydrostatic pressure as selective factor Somero (1990) points out that conformation 
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changes in multisubunit proteins (such as many enzymes and haemoglobin) are much more 

dependent on pressure as generally is assumed. 'Normal' proteins are hampered in their 

function by pressures above 500-600 m depth and need special adaptations. As indicated 

above bathydraconids prefer deeper areas. Pressure adaptations in their haemoglobin are 

therefore probable. 

In summary these findings demonstrate a preference of bathydraconids for high latitudes, 

great depths and extremely low temperatures. The low temperature and therefore high oxygen 

content of such water bodies is reflected in the low oxygen affinity of B. marri haemoglobin, 

which is arnongst the lowest values found in this study (Table 3.4). Accordingly low values 

for haematocrit and erythrocytes were found (Table 3.2). Hence, B. marri seems to be con- 

fined to high environmental oxygen contents. Values for other bathydraconids are similar, 

particularly for those species which are also known to prefer deep and cold waters (Bathy- 

draco macrolepis, Gerlachea australis, Racovitzia glacialis). 

These species have also the presence of pronounced Bohr and Root effects in common, i.e. 

a strong dependence of oxygen binding on small changes in pH. The only bathydraconid 

species without Bohr and Root effects is Gymnodraco acuticeps (Wells & Jokumsen 1982; 

di Prisco et al. 1990; Table 4.4), a species which so far has not been caught in deep and cold 

waters. 

Strong Bohr and Root effects are often found in active species. Own observations on Bathy- 

draco marri and Bathydraco macrolepis indicate a generally low level of routine activity. For 

instance B. marri sits most of the time motionless on the bottom of the aquarium. However, 

disturbances can cause impressively active reactions. It swims by means of fast bursts of the 

tail in a zig-zag-like manner. These bursts can last up to 3-4 rninutes, making it difficult to 

capture a specimen in a large tank. This behaviour still exists after more than two years in 

captivity. 

Gymnodraco acuticeps, another bathydraconid species we keep since more than two years, 

does not show such active reactions. Instead, it remains in position and only slightly increas- 

es movements with pectoral and pelvic fins, even upon severe disturbance. The single 

haemoglobin of G. acuticeps does not have a Root and Bohr effect (Wells & Jokumsen 

1982; di Prisco et al. 1990). To date, only one other Antarctic species, Aethotaxis mitopteryx, 

has been found to have a single haemoglobin not displaying Root and Bohr effects (D'Avino 

et al. 1990). In good accordance also A. mitopteryx is not active at all (own observations 

during 'EPOS leg 3' and see below). 
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From these observations On activity of bathydraconids it is concluded that the presence of 

pronounced Root and Bohr effects in the single haemoglobin indicates their potential for 

activity. 

Aethotaxis mitopteryx: In this species blood physiological results differ distinctly from those 

found in B. rnarri. Haemoglobin of A. mitopteryx does not show a Root effect and hardly any 

Bohr effect. The Bohr coefficient found in this study (0, Table 3.7) does not exceed -0.28 

and cooperativity (n%, Table 3.7) is almost absent. Haematology is marked by very low 

values for the number of red blood cells, haemoglobin content and oxygen carrying capacity 

(Table 3.7). What do these features of A. mitopteryx blood suggest for its mode of life ? 

The very weak (nearly absent) Bohr effect does not allow a fine tuning of oxygen delivery 

to the tissues and indicates a limited scope of activity. The absence of the Root effect, a 

rather unusual feature in Antarctic fishes investigated so far, seems to exclude a particular 

role of visual perception. This, of Course, would also exclude certain fast moving food 

organisms. 

The low haematological values suggest a very sluggish mode of life. Although A. mitopteryx 

is regularly caught in the Warm-Deep-Water (WDW), which can have considerably less 

oxygen content (see Introduction), its haemoglobin has only a moderate oxygen affinity. This 

strongly suggests that optimized oxygen uptake is not very important for this species, which 

is an argument in favour of a sluggish mode of life. The majority of blood characteristics 

found in this study for A. mitopteryx also apply to Pleuragramma antarcticum, a closely 

related species known to be sluggish (Johnson 1989; Kunzmann 1990; Hubold 1991) and en- 

tirely pelagic. 

These assumptions on the ecology of A. mitopteryx are confirmed by several authors. De Witt 

(1970) underlines the close affinities to the pelagic Pleuragramma antarcticum in body shape 

and general appearance and assumes a pelagic lifestyle at the continental slope. Subsequent 

studies of various authors suggested a rather pelagic lifestyle, too (Eastman 1981, De Vries 

& Eastman 1981, Eastman & De Vries 1982, Andriashev 1985, Miller 1985, Ekau 1988), al- 

though repeated occurrence in Agassiz Trawls (Hubold pers comm.) rather indicates a 

benthopelagic lifestyle. Authors agree on a very sluggish mode of life, mainly based on 

buoyancy adaptations (Eastman & De Vries 1982) and food observations (Eastman 1985). 

Own observations in aquaria also confirm this assumphon. 

A. mitopteryx and P. antarcticum are the only species with very low haematological parame- 



Discussion and Conclusions 67 

ters combined with a sluggish and pelagic or benthopelagic mode of life. Both species are 

good examples for adaptation to an environment, which has only recently (in evolutionary 

terms) been occupied by fishes. According to Iwami (1985) A .  mitopteryx and P.  antarcticum 

are 'modern' species and the colonization of the pelagic realm has repeatedly been reported 

to be a rather recent process, too (Eastman 1985; Hubold 1990). Hubold (1990) suggests that 

the colonialization of the pelagic niche has great advantages, at least during parts of the year, 

due to the increased productivity of the water colurnn. The extreme seasonality in light, ice 

and primary production is buffered by incorporation of considerable lipid deposits (Eastnian 

1985; Hagen 1988) and the low energy consuming mode of life, which is reflected i n  the 

extremely slow growth of adults (Ekau 1988). 

GENERAL CONCLUSIONS ABOUT FAMILIES AND THEIR EVOLUTION 

Bathydraconidae, Artedidraconidae 

When haematological Parameters are considercd on a family level, it is obvious that the 

variability is always greatest in nototheniids. In bathydraconids and artedidraconids there is 

in general less variance (except for a few haematocrit values). At the same time values for 

Hb and RBC are decreasing in the order nototheniids, artedidraconids, bathydraconids and 

finally channichthyids. Keeping in mind the overall evolutionary trend to reduce blood 

viscosity in all Antarctic species, this decreasing order could be interpreted as an indirect 

reflection of evolutionary processes, where bathydraconids and channichthyids represent the 

most advanced groups. 

Bathydraconids and artedidraconids are usually referred to as the 'typical high-Antarctic' 

species (De Witt 1970) and, as outlined above, bathydraconids clearly prefer deep and cold 

areas @kau 1988; Schwarzbach 1988). Thus, their haematology reflects both, extremely 

stable environments as well as their taxonornic position, just below the channichthyids (Fig. 

4.1). This hypothesis is strongly supported by the absence of haemoglobin multiplicity in this 

family (table 3.8) and by morphological data from other authors (Iwami 1985; Eastman & 

Grande 1989; cf. Page 59). 

Nototheniidae 

The geographical distribution of nototheniids does not show such clear preferences and many 

species are also found in sub-Antarctic areas. The variation in morphology and lifestyle is 

also much more pronounced in this family, as a comparison between Notothenia gibberifrons, 

Dissostichus rnawsoni and Pleuragrarnrna antarcticurn easily demonstrates. There are also 

many hints from other fields of investigation that particularly this family seems to be in a 
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process of speciation (Hubold 1991). This would explain higher variance of haematological 

values, as compared to bathydraconids or artedidraconids. 

20-25 million years ago the family Nototheniidae split into three groups. In Miocene, i.e. less 

than 10 million years ago, the most advanced group amongst them, the Pleuragrammiini, di- 

vided into three species Pleuragramma antarcticum, Cryothenia peninsulae and Aethotaxis 

mitopteryx (Andersen 1984). All three species are more or less confined to a pelagicbentho- 

pelagic mode of life. There are indications that some special adaptations (e.g. neutral buoyan- 

cy, antifreeze, blood characteristics) may be of relatively recent origin (Andersen 1984), and 

could be assigned to recent changes in mode of life. 

Antarctic notothenioids derived from primarily benthic perciforrn fishes. The increasing 

pelagization of species may be Seen as a fairly recent process (Eastman 1985). Only these 

pelagicbenthopelagic species show peculiarities in haematological Parameters and oxygen 

binding properties (Table 4.3). P. antarcticum and A. mitopteryx do not follow expected 

Patterns known from temperate species. Their low values for haematocrit, red blood cell 

number and haemoglobin concentration are close to those of sluggish, benthic species, such 

as Trematomus centronotus or P. bernacchii. In fact, as outlined above, both P. antarcticum 

and A. mitopteryx seem to be sluggish. 

However, the only moderate oxygen affinities of their haemoglobins rather resemble the more 

active species, such as Pagothenia borchgrevinki or Dissostichus mawsoni. The low pH 

sensitivity of A. mitopteryx haemoglobin is also unusual. This is apparently related to the 

unique mode of life, i.e. pelagic and sluggish. Usually, pelagic species are the most active 

ones. The only other Antarctic species, which has sirnilar haematological values and a pH 

insensitive haemoglobin, is the bathydraconid Gymnodraco acuticeps (Wells et al. 1980; di 

Prisco et al. 1990). It is not surprising that it is the only bathydraconid species with a 

cryopelagic mode of life. 

On the other hand P. antarcticum has in contrast to A. mitopteryx two haemoglobins in 

higher amounts (Fig. 3.2 and Table 3.8). As outlined in the Materials and Methods section 

(page 30) available samples were not sufficient for a detailed functional study on both 

haemoglobins (Hbl, Hb2) of P. antarcticum. Therefore, we do not know yet if Hbl and Hb2 

are functionally different haemoglobins. However, from temperate and tropical fishes we 

know that ratlos between multiple haemoglobins can vary seasonally and synthesis on 

demand is possible (Love 1980). This is particularly interesting in P. antarcticum, because 

the species is known for seasonal migrations. During migrations it is likely that different 

water masses are crossed and a functionally different second haemoglobin could be helpful 
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when environmental oxygen varies. Since morphological data suggest that both P. 

antarcticurn and A. mitopteryx are modern species (Iwarni 1985) it is not likely that the 

second haemoglobin (Hb2) of P. antarcticum is only an evolutionary remnant. However, this 

would mean Hb2 is needed and therefore may differ functionally from Hbl. 

Channichthyidae 

In the same environment we find on one hand red-blooded fishes with a complex machinery 

for oxygen transport and on the other hand fishes totally lacking haemoglobin. This raises a 

number of intriguing questions, such as: What is the advantage or disadvantage of haemo- 

globinless fishes in Antarctic fish communities? Do Antarctic fishes need haemoglobin at all? 

The following considerations should be kept in mind when answers are sought. At sub-zero 

temperatures, metabolic demand for oxygen is reduced, while the solubility of oxygen in 

blood plasma is increased. Thus, the blood of Antarctic fishes does not have the same 

transport requirements as that of more active fishes living in warmer waters (Wells 1987). 

Moreover, fish are not nearly as dependent upon the quantity of functioning haemoglobin as 

are marnmals and birds. Many sluggish fish species can loose most of their haemoglobin 

without any immediate disastrous effects (Steen & Berg 1966; Holeton 1972). However, 

experiments with active or moderately active fish of temperate regions (including perciform 

species) have shown that these fishes cannot loose more than 50% of their haemoglobin (di 

Prisco, Pers. cornrn.). 

Recent experiments by di Prisco et al. (in press) with carbon monoxide treatment totally 

blocked the oxygen binding site in haemoglobin of the Antarctic species Pagothenia 

bernacchii. The results did not reveal any discemible effects on the vital functions. Induced 

reduction of the haematocrit to less than 1-2% had no apparent effect either (Wells et al. 

1990). These experiments demonstrate that P. bernacchii can carry the routinely needed 

oxygen just physically dissolved in plasma. Unfortunately, P. bernacchii is only moderately 

active. It would be interesting to See how active Antarctic fishes perform. From very active 

temperate and tropical fishes it is known that they die immediately without haemoglobin. 

It is therefore concluded, that as long as Antarctic fishes (including icefishes) swim norrnally, 

their tissue can get all oxygen it needs from the dissolved part in the plasma alone. However, 

as soon as activity over longer periods (more than a few seconds) is needed this can most 

likely only be performed with haemoglobin (Love 1980). From earlier investigations it is 

known that resting icefishes use already up to 60-70% of their oxygen capacity (Holeton 

1970). Therefore, drastic enhancement of oxygen delivery to support escape reactions is 

simply not possible. In contrast, resting red-blooded fishes use only about 20-30% of their 



70 Discussion md Conclusions 

capacity, although the resting oxygen consumption of red-biooded and haemoglobinless 

species is similar (Holeton 1970). 

Thus, one consequence for channichthyids seems to be a reduced scope of activity and a 

reduced ability to withstand sustained hypoxia (Macdonald et al. 1987). There is no evidence, 

however, that icefish are disadvantaged in any way. As in red-blooded families we find 

relatively active species, such as Dacodraco hunteri and species with respectable size, such 

as Champsocephalus gunnari (Kock 1981). Wells et al. (1990) even point out, that 

channichthyids are hardy species surviving the rigours of capture, anaesthesia, handling, 

exercise and hypoxia just as well as red-blooded nototheniids. 

FINAL REMARKS 

For the following considerations it should be kept in mind that the routine activity level of 

a sluggish, boreal species such as Zoarces viviparus, is still two orders of magnitude higher 

than that of a sluggish, Antarctic species (Hubold 1991). Antarctic fishes described as active 

should therefore not be compared with active, tropical fish. 

In an ecological sense the midwaters of the Southern Ocean seem to be underutilized by fish 

(Eastman & Grande 1989). Consequently, the above mentioned process of pelagization of 

species is expanding and most expressed in channichthyids (Schwarzbach 1988). Our 

common concept about pelagic fish, actively swirnming and therefore relying On efficient 

oxygen transport Systems, should be extended. Antarctic notothenioids, including the pelagic 

species, seem to rely on low activity, small gas exchange areas, low oxygen capacity and low 

metabolic rates. Apparently, power and performance of gills, circulatory Systems andlor mus- 

cles are not selective factors. Notothenioids simply can afford these energy saving strategies, 

because of facilitating factors, such as: 

- high ambient oxygen contents, enabling a poorly developed oxygen transport System 

- absence of food-competition and predatory pressure, facilitating a sluggish mode of life 

Therefore, even pelagic species can rely on the 'sit-(swim)-and-wait strategy'. 

Most key adaptations of Antarctic notothenioids to the cold environment are based on bio- 

chemical adjustments (Eastman & Grande 1989) in metabolic pathways or important cell 

structures. Some notable examples are: increased protein synthesis, low activation energies 

and enhanced low temperature activities in various enzymes, poor developed glycolytic 

pathways combined with an increased role of the pentosephosphate cycle, lipid Storage in 

muscles instead of glycogen deposits, increased membrane fluidity, high conduction velocities 
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and fully compensated synaptic events in the nervous system and finally cold-stable 

microtubules (for a review see Macdonald et al. 1987). Some of these adjustments directly 

influence respiration. As previously assumed and c o n f i e d  by the results of this study, 

evolutionary adaptations in the respiratory system seem to be directional (directive) and 

follow the line icefishes went along. This does not necessarily mean that only haemoglobin- 

less fishes will survive. But due to the fact that oxygen transport is not a crucial factor in 

Antarctic ecosystems, evolution may be directed towards less variance in respiratory charac- 

teristics. 

Various fields of physiology regard Antarctic fishes as exceptional with respect to their 

adaptations. A final question is therefore: 1s the respiratory physiology of Antarctic fishes 

also different from that of other fishes? 

Regarding oxygen uptake Antarctic fishes seem to be disadvantaged. Red-blooded species 

have smaller gills, less erythrocytes and less haemoglobin than their relatives from temperate 

areas. Heart size and blood volume are similar to other fishes. They usually rely On only one 

haemoglobin with a low oxygen affinity, which marks a dependency on well-oxygenated 

waters. However, the blood viscosity of red-blooded Antarctic fishes is lower than for 

instance in Arctic fishes. In energetic terrns this is a slight advantage. During evolutionary 

Progress more respiratory characteristics have been modified. In channichthyids, the most ad- 

vanced group arnongst Antarctic fishes, we find already significantly reduced blood viscosity, 

no haemoglobin and only very few 'erythrocyte-like' cells. Moreover, their blood volume, 

diameter of vessels, heart size and hean stroke volume is increased. Their gill size seems 

larger than in their red-blooded relatives and is thus of sirnilar size to that of temperate and 

tropical fishes. Scales are completely reduced and cutaneous respiration is important. Thus, 

the missing haemoglobin in channichthyids is at least partly compensated. 

Adaptations in oxygen delivery or consumption are as important as adaptations in oxygen 

uptake. In channichthyids we find a considerably increased differente in oxygen partial pres- 

Sure between blood and metabolizing tissues. This greatly facilitates oxygen delivery. It is 

suggested that an in general less active and energy-saving (thus 02-saving) mode of life is a 

key adaptation which reduces 02-consumption. Thus, channichthyids can cope without 

haemoglobin and red-blooded Antarctic fishes manage with less haemoglobin. It is suggested 

that Antarctic fishes in general are less active than fishes from temperate and tropical areas. 

This 'strategy' could only be developed because of high ambient 0, tensions and the absence 

of food-competition and predatory pressure. Even pelagic species follow this 'strategy' with 

the help of large lipid deposits to maintain buoyancy. 



72 References 

References 

Andersen, N.C. 1984 Genera and subfamilies of the family Nototheniidae from the Antarctic and 
Sub-Antarctic. Steenstrupia lO(1): 1-34. 

Andriashev, A.P. 1965 A general review of the Antarctic fish fauna. Monographiae Biologicae 25: 
49 1-550. 

Andriashev, A.P. 1987 A general review of the Antarctic bottom fish fauna. Proc. V Congr. Europ. 
Ichthyol. Stockholrn, pp. 357-372. 

Amtz, W.; Ernst, W.; Hempel, I. 1990 The expedition Antarktis VIV4 (EPOS leg 3) and V1115 of RV 
'Polarstern" in 1989. Rep. Polar Res. 68: 1-213, 

Barharn, W.T.; Smit, G.L.; Schonbe, H.J. 1979 The effect of heparin concentration on certain blood 
Parameters of the rainbow tmut Salmo gairdneri Richardson. Comp. Biochem. Physiol. 
63C: 369-371. 

Baumgarten-Schuhmann, D.; Piiper, J. 1968 Gas exchange in the gills of resting unanaesthetized 
dogfish (Scyliorhinus stellaris). Resp. Physiol. 5 :  317-325. 

Blaxhall, P.C. 1973 E m r  in haematmcrit vaiue produced by inadequate concentration of 
ethylendiamine tetra-acetate. J. Fish Biol. 5: 767-769. 

Blaxhail, P.C.; Daisley, K.W. 1973 Routine haematologicai methods for use with fish blood. J .  Fish. 
Biol. 5: 771-781. 

Brittain, T. 1987 The Root effect (Minireview). Comp. Biochem. Physiol. 86B(3): 473-481. 

Caruso, C.; Kunzmann, A.; di Prisco, G. in prep. Primary structure and oxygen binding properties of 
the single haemoglobin of the Antarctic teleost Bathydraco marri. 

Clarke, A. 1990 Ternperature and evolution: Southem Ocean cooling and the Antarctic marine fauna. 
In: Kerry, K.R.; Hempel, G. (eds.) Antarctic ecosystems: change and conservation. 
Springer, Berlin, pp. 9-22. 

Coburn, C.B.; Fischer, B.A. 1973 Red blood cell hematology of fishes: a critique of techniques and 
a compilation of published data. J. Mar. Science 2(2): 37-58. 

Danicls, R.A. 1982 Feeding ecology of some fishes of the Antarctic peninsula. Fish. Bull. 80: 
575-588. 

D'Avino, R.; Fago, A.; Kunzrnann, A.; di Prisco, G. in prep. Amino acid sequence and functional 
bchaviour of the single haernoglobin of the Antarctic teleost Aethotaxis mitopteryx. 

D'Avino, R.; Caruso, C.; Schinina', M.E.; Rutigliano, B,; Romano, M.; Camardella, L.; Bossa, F.; 
Barra, D.; di Prisco, G. 1989 The arnino acid sequence of the a- and B-chains of the two 
hacmoglobins of the Antarctic fish Notothenia coriiceps neglecta. FEBS Leiters 250: 
53-56. 

D'Avino, R.; di Prisco, G. 1988 Antarctic fish haemoglobin: an outline of the molecular structure and 
oxygcn binding properties. - I. Molecular siructurc. Comp. Biochem. Physiol. 90B: 



References 73 

D'Avino, R.; di Prisco, G. 1989 Haemoglobin from the Antarctic fish Notothenia coriiceps neglecta. 
1. hrification and characterization. Eur. J. Biochem. 179: 699-705. 

D'Avino, R.; Fago, A.; Kunzmann, A.; di Prisco, G. 1990 Structure and function of the haemoglobin 
of the Antarctic teleost Aethotaxis mitopteryx. Ital. biochem. Soc. Trans., Minerva 
Biotecnologica (Suppl.) 2: 315. 

Davison, W.; Forster, M.E.; Frankiin, C.E.; Taylor, H.H. 1988 Recovery from exhausting exercise in 
an Antarctic fish, Pagothenia borchgrevinki. Polar Biol. 8: 167- 17 1. 

De Jager, S.; Dekkers, W.J. 1975 Relations between gill structure and activity in fish. Neth. J. of 
Zool. 25(3): 276-308. 

De Vries, A.L.; Eastman, J.T. 1981 Physiology and ecology of notothenoid fishes of the ROSS Sea. J. 
Royal SOC. of New Zealand ll(4): 329-340. 

De Witt, H.H. 1970 The character of the midwater fish fauna of the ROSS Sea, Antarctica. In: 
Holdgate (ed.) Antarctic Ecology, Vol 1, pp. 305-314, Academic Press, London. 

di Prisco, G. 1985 Antarctic fishes and cold-adaptation Atli l Simposio di Biochimica marina. 
Editoriale Grasso, Bologna, pp. 51-86. 

di Prisw, G. 1988 A study of haernoglobin in Antarctic fishes: purification and characterization of 
haernoglobins frorn four species. Cornp. Biochem. Physiol. 90B: 631-637. 

di Prisco, G.; D'Avino, R. 1989 Molecular adaptation of the blood of Antarctic teleosts to 
environmental conditions. Antarctic Science 1: 1 19-124. 

di Prisw, G.; D'Avino, R.; Carnardella, L.; Caruso, C.; Romano, M.; Rutigliano, B. 1990 Structure 
and function of haemoglobin in Antarctic fishes and evolutionary implications. Polar 
Biol. 10: 269-274. 

di Prisw, G.; Giardina, B.; D'Avino, R.; Condo', S.G.; Bellelli, A.; Brunori, M. 1988 Antarctic fish 
haemoglobin: an outline of the molecular structure and oxygen binding properties. - 11. 
Oxygen binding properlies. Comp. Biochern. Physiol. 90B: 585-591. 

Dickerson, R.E.; Geis, I. 1983 Haemoglobin: structure, function, evolution and pathology. 
Benjarnin/Cummings Publishing Co., Menlo Park, CA. 

Domen, C.F. von; RÃ¤ke P. unpubl. Altersanalysen an Pagetopsis maculatus (Barsukov & Permitin) 
(Channichthyidae). Sernesterarbeit 1987, IfM, UniversitÃ¤ Kiel, 22 pp. 

Eastman, J.T. 1981 Morphological specializations in Antarctic fishes. Ant. J.U.S. 16(5): 146-147. 

Eastman, J.T. 1985 The evolution of neutrally buoyant Notothenioid fishes: their specialisations and 
potential interactions in the Antarctic marine food web. In: Siegfried, R.W.; Condy, P.R.; 
Laws, R.M. (eds.): Antarctic nutrient cycles and food webs. Springer, Berlin, pp 430-436. 

Eastman, J.T. 1988 Ocular morphology in Antarctic notothenioid fishes. J. Morphol. 196: 283-306. 

Eastman, J.T.; De Vries, A. L. 1982 Buoyancy studies of notothenioid fishes in Mc Murdo Sound, 



74 References 

Antarctic. Copeia: 385-393. 

Eastman, J.T.; Grande, L. 1989 Evolution of the Antarctic fish fauna with emphasis on the recent 
notothenioids. In: Crame, J.A.(ed.) Origins and evolution of the Antarctic biota. Geol. 
Soc. Special Publ. 47: 241-252. 

Eckert, R. 1986 Tierphysiologie. Thieme, Stuttgart etc., 697 pp. 

Ekau, W. 1988 Ã–komorphologi nototheniider Fische aus dem Weddellrneer, Antarktis. Ber. 
Polarforsch. 5 1 : 1-140. 

Ekau, W. 1990 Demersal fish fauna of the Weddeii Sea, Antarctica. Antarctic Science 2: 129-137. 

Everson, 1.; Ralph, R. 1968 Blood analyses of some Antarctic fish. Br. Antarct. Surv. Bull. 15: 59-62. 

Fischer, W.; Hureau, J.C. 1985 F A 0  Species identification sheets for fishery purposes. Southem 
Ocean (Areas 48, 58, 88). Vol.2, 252 pp. 

Giardina, B.; Amiconi, G. 1981 Measurement of binding of gaseous and nongaseous ligands to 
hemoglobin by conventional spectrophotometric procedures. Methods Enzyrnol. 76: 
417-427. 

Goethe, J.W. 1808 Faust I. Goethe's Werke - Achter Band. Cottasches Handschriftenarchiv, Schiller 
National Museum, Marbach. 

Grigg, G.C. 1967 Some respiratory properties of the blood of four species of Antarctic fishes. Cornp. 
Biochem. Physiol. 23: 139-148. 

Hagen, W. 1988 On the significance of lipids in Antarctic zooplankton. Rep. Polar Res. 49: 1-129. 

Hallmann L. 1980 Klinische Chemie und Mikroskopie. Thieme, Stuttgart, 754 pp. 

Hellmer, H.H.; Bersch, M. 1985 The Southem Ocean. Rep. Polar Res. 26: 1-115. 

Hemmingsen, E.A.; Douglas, E.L. 1970 Respiratory characteristics of the hernoglobinfree fish 
Chaenocephalus aceratus. Comp. Biochem. Physiol. 33(4): 733-744. 

Hille, S. 1982 A literature review of the blood chemistry of rainbow trout Sulmo gairdneri 
Richardson. J. Fish. Biol. 20: 535-569. 

Holeton, G.F. 1970 Oxygen uptake and circulation by a haemoglobinlcss fish (Chaenocephalus 
aceratus) compared with three red-blooded Antarctic fish. Comp. Biochcm. Physiol. 34: 
457-47 1. 

Holeton, G.F. 1972 Gas exchange in fish with and without hcmoglobin. Rcsp. Physiol. 14(1/2): 
142-150. 

Holeton, G.F. 1976 Respiratory morphometrics of white and red-bloodcd Antarclic fish. Comp. 
Biochem. Physiol. 54A: 215-220. 

Huber, F.; Braunitzer, G. 1989a The primary structurc of clcctric ray hcmoglobin (Torl~cdo 
marmorata) - Bohr effect and phospatc inicraciion. Biol. Chern. Hoppc-Scylcr 370: 
831-838. 



Huber, F.; Braunitzer, G. 1989b The primary structure of the hemoglobin of the electric eel 
(Electrophorus electricus). Biol. Chem. Hoppe-Seyler 370: 245-250. 

f lubold, G. 1985 The early life-history of the high-Antarctic silverfish Pleuragramma antarticwn. In: 
Siegfried, W.R.; Condy, P.R; Laws, R.M. (eds.): Antarctic nutrient cycles and food webs, 
pp. 445-45 1, Berlin, Springer. 

Hubold, G. 1990 Ecology of notothenioid fishes in the Weddeil Sea. I1 Int. Conf. Biol. Ant. Fishes, 
Raveilo, 30.5.-1.6.1990. 

Hubold, G. 1991 Zur Ã–kologi der Fische im Weddeilmeer. Habilitationsschrift, Math.-Nat. Fakultit, 
UniversitXt Kiel, pp. 

Hughes, G.M. 1964 Fish respiratory homeostasis. Symp. SOC. Exp. Biol. 18: 81-107. 

Hureau, J.C.; Balguerias, E.; Duhamel, G,; Kock, K.-H.; Ozouf-Costaz, C. 1990 Fish fauna of the 
eastem Weddeil Sea. Rep. Polar Res. 68: 130-138. 

Hureau, J.C.; Petit, D.; Fine, J.M.; Mameux, M. 1977 New cytological, biochemical, and 
physiological data On the colorless blood of the Channichthyidae (Pisces, Teleosteans, 
Percifonnes). In: Llano, G.A. (ed.): Adaptations within Antarctic ecosystems. Gulf Publ. 
Co, Houston, pp. 459-477. 

Iwami, T. 1985 Osteology and relationships of the farnily Channichthyidae. Mem. Natl. Inst. Polar 
Res. Ser. E No.36: 1-69. 

Johnston, I.A. 1989 Antarctic fish muscles - structure, function and physiology. Antarctic Science 
l(2): 97-108. 

Johnston, I.A.; Fitch, N.; Zummo, G.; Wood, R.E.; Harrison, P.; Tota, B. 1983 Morphometric and 
ultrastructural features of the ventricular myocardium of the haemoglobinless icefish 
Chaenocephalus aceratus. Comp. Biochem. Physiol. 76A(3): 475-480. 

Kennet, J.P. 1977 Cenoroic evolution of Antarctic glaciation, the circurnantarctic ocean and their 
impact on global paleoceanography. J. Geophys. Res. 82: 3843-3876. 

Kleinschmidt, T.; Sgouros, J.G. 1987 Hemoglobin sequences: Mini review. Biol. Chem. Hoppe-Seyler 
368: 579-615. 

Kock, K.-H. 1981 Fischereibiologische Untersuchungen an drei antarktischen Fischarten: 
Champsocephalus gunnari Unnberg, 1905, Chaenocephalus aceratus (LÃ¼nnberg 1906) 
und Pseudochaenichthys georgianus Norman, 1937. Mitt. Inst. Seefischerei 32: 1-226. 

Kock, K.-H. 1985 Antarctic fish. In: Bonner, M.W.; Walton, D.W.H. (eds.): Key environment, 
Antarctica, Pergamon Press, Oxford etc., pp. 173-192. 

Kooyman, G.L. 1963. Erythrocyte analysis of some Antarctic fishes. Copeia 1963: 457-458. 

Korcock, D.E.; Houston, A.H.; Gray, J.D. 1988 Effects of sampling conditions on selected blood 
variables of rainbow trout, Salmo gairdneri Richardson. J. Fish. Biol. 33(2): 319-330. 

Kunzmann, A. 1987. Gill morphometrics of an Antarctic fish, Pleuragramma antarcticum. Proc. V 
Congr. europ. Ichthyol., Stockholm, pp. 467-468. 



76 References 

Kunzmann, A. 1990 Giil morphometrics of two Antarcic fish species: Plewagramma antarcticurn and 
Notothenia gibberifrons. Polar Biol. 11: 9-18. 

Kunzmann, A.; Caruso, C.; di Prisco, G. (in press) Haematological studies on a high-AntarÃ¼ fish: 
Bathydraco marri Norman. J. exp. mar. Biol. Ecol. 

Kunzmann, A.; di Prisco, G. 1990 On the blood physiology of WeddeU Sea fishes. 2nd Int. Conf. 
Biol. Ant. Fishes, Raveilo, 30.5-1.6.90. 

Kunzmann, A.; di Prisw, G.; Fago, A.; D'Avino, R. in prep. Blood and haemoglobin analysis in a 
high-Antarctic fish: Aethotaxis mitopteryx De Witt. 

Larsson, A.; Johansson-SjObeck, M.L.; Fznge, R. 1976 Comparative study of some hematological and 
biochemical blood Parameters in fishes from the Skagerrak. J. Fish Biol. 9: 425-440. 

Love, R.M. 1980 The chemical biology of fishes. Vol 2, Advances 1968-77. Academic Press, 
London, 943 pp. 

Macdonald, J.A.; Montgomery, J.C.; W e b ,  R.M.G 1987 Comparative physiology of Antarctic Fishes. 
Advances in M x .  Biol. 24: 321-388. 

Macdonald, J.A.; Montgomery, J.C.; WeUs, R.M.G. 1988 The physiology of McMurdo Sound fishes: 
Current New Zealand research. Comp. Biochem. Physiol. 90B(3): 567-578. 

Miller, R.G. 1987 Origins and pathways possible for the fishes of the Antarctic Ocean. Proc. V 
Congr. europ. Ichthyol., Stockholm, pp. 373-380. 

Monod, J.; Wyman, J.; Changeaux, J.P. 1965 On the nature of allosteric transitions: a plausible 
model. J. molec. Biol. 12: 88-118. 

Nikinrnaa, M. 1990 Vertebrate red blood cells. Springer, Berlin etc., 262 pp. 

Penzlin, H. 1980 Lehrbuch der Tierphysiologie. Fischer Verlag, Stuttgart, New York, 550 pp. 

Pcrmitin, Y.Y.; Tarverdiyeva, M.I. 1978 Feeding of fishes of the farnilies Nototheniidae and 
Channichthydae in the South Orkney islands. Sov. J. Mar. Biol. 4: 619-622. 

Pcrutz, M.F.; Brunori, M. 1982 Stcrcochcmisiry of woperative effects in fish and arnphibian 
haemoglobins. Nature 299: 421-426. 

Pcrutz, M.F.; Kilmartin, J.V.; Nishikura, K.; Fogg, J.H.; Bufler, P.J.G.; Roilema, H.S. 1980 
Identification of residucs contributing to the Bohr effect in human haemoglobin. J. molec. 
Biol. 138: 649-670. 

Piipcr, J.; Baumgarten-Schuhrnann, D. 1968 Effcctiveness of 0, and CO, exchange in the giils of the 
dogfish (Scyliorhinus ste1lari.s). Rcsp. Physiol. 5: 338-349. 

Piipcr, J.;  Schuhmann, D. 1967 EiTicicncy of O-, exchange in the gills of the dogfish Scyliorhinus 
stellaris. Rcsp. Physiol. 2: 135-148. 

Powers, D.A. 1980 Molecular ecology of tclcost fish hcmoglobins: strategies for adapting to changing 
cnvironmcnts. Am. Zoo1 20: 139- 162. 



References 77 

Pumarn, R.W.; Freel, R.W. 1978 Hematological Parameters of five species of marine fishes. Cornp. 
Biochem. Physiol. 61A: 585-588. 

Qvist, J.; Weber, R.E.; De Vries, A.L.; Zaphol, W.M. 1977 pH and haernoglobin oxygen affinity in 
blood from the Antarctic cod Dissostichus mawsoni. J. exp. Biol. 67: 767-788. 

Rakusa-Suszczewski, S.; Zukowski, C. 1980 Blood of Antarctic fishes: Notothenia rossii marrnorata 
Fischer and Notothenia neglecta Nybelin. Pol. Polar Res. l(1): 103-108. 

Rankin, J.C.; Johnson, T.P; Kunzmann, A.; Wbhnnann, A.P.A. 1990 Physiological studies on teleosl 
fish. Rep. Polar Res. 68: 144-151. 

Riggs, A. 1970 Properdes of fish hemoglobins. In: Hoar, W.S.; Randall, D.J. (eds.) Fish Physiology 
Vol. IV: 209-246, Academic Press, London. 

Riggs, A. 1979 Studies of the hemoglobins of Amazonian fishes: an overview. Cornp. Biochem. 
Physiol. 62A: 257-272. 

Riggs, A.F. 1988 The Bohr effect. Ann. Rev. Physiol. 50: 181-204. 

Romeis, B. 1968 Mikroskopische Technik. Oldenburg Verlag, MÃ¼nchen 757 pp. 

Root, R.W. 1931 The respiratory function of blood in marine organisms. Biol. Bull. 61: 427-456. 

Rossi Fanelli, A.; Antonini, E.; Caputo, A. 1958 Studies on the structure of hemoglobin. I 
Physiwchemical properties of human hemoglobin. Biochim. Biophys. Acta 30: 608-615. 

Schininh, M.E.; De Biase, D.; Bossa, F.; Barra, D. 1988 In situ treatment of proteins prior sequence 
analysis. J. Prot. Chem. 7: 284-286. 

Schrnidt-Nielsen, K. 1986 Anima1 physiology - adaptation and environments. Cambridge University 
Press, Cambridge, 619 pp. 

Scholander, P.F.; Van Dam, L. 1957 The wncentration of hemoglobin in sorne cold water Arctic 
fishes. J. cell. comp. Physiol. 49: 1-4. 

Schwarzbach, W. 1988 The demersal fish fauna of the eastem and southem Weddeii Sea: 
geographical distribution, feeding of fishes and their trophic position in the food web. 
Rep. Polar Res. 54: 1-94. 

Somero, G.N. 1990 Life at low volume Change: hydrostatic pressure as a selective factor in the 
aquatic environrnent. Amer. B o l .  30: 123-135. 

Steen, J.B.; Berg, T. 1966 The gills of two species of hemoglobinfree fishes cornpared to those of 
other teleosts. Comp. Biochem. Physiol. 18: 517-526. 

Tetens, V.; Wells, R.M.G.; De Vries, A.L. 1984 Antarctic fish blood: respiratory propenies and the 
effects of thermal acclimation. J. exp. Biol. 104: 269-288. 

Tyler, J.C. 1960 Erythrocyte wunts and haemoglobin determinations for two Antarctic nototheniid 
fishes. Standford Ichthyol. Bull. 7: 199-201. 

Val, A.L.; Almeida-Val, V.M.F.; Affonso, E.G. 1990 Adaptive features of Amazonian fishes: 



78 References 

haemoglobins, haematology, intraerythrocytic phosphates and whole blood Bohr effect of 
Pterygolichthys multiradiatus (Silurifonnes). Comp. Biochem. Physiol. 97B(3): 435-444. 

W e b ,  R.M.; Ashby, M.D.; Duncan, S.J.; Macdonald, J.A. 1980 Comparative study of the 
erythrocytes and haemoglobins in nototheniid fishes from Antarctica. J. Fish Biol. 17: 
517-527. 

Wells, R.M.; Jokurnsen, A. 1982 Oxygen binding properties of hemoglobins from Antarctic fishes. 
Comp. Biochem. Physiol. 71B: 469-474. 

Wells, R.M.G. 1987 Respiration of Aniarctic fish from Mc Murdo Sound. Comp. Biochem. Physiol. 
88A(3): 417-424. 

Weiis, R.M.G.; Baldwin, J. 1990 Oxygen transport potential in iropical reef fish with special 
reference to blood viscosity and hematocrit. J. exp. mar. Biol. Ecol. 141: 131-143. 

WeUs, R.M.G.; Grigg, G.C.; Beard, L.A.; Summers, G. 1989 Hypoxie responses in a fish from a 
stable environment: blood oxygen transport in the Antarctic fish Pagothenia 
borchgrevinki. J. exp. Biol. 141: 97-1 11. 

Wells, R.M.G.; Macdonald, J.A.; di Prisco, G. 1990 Thin-blooded Antarctic fishes: a rheological 
comparison of the haemoglobin-free icefishes Chionodraco kuthleenae and Cryodraco 
antarcticus with a red-blooded nototheniid, Pagothenia bernacchii. J. Fish Biol. 36: 
595-609. 

Wells, R.M.G.; Tetens, V.; De Vries, A.L. 1984 Recovery from Stress following capture and 
anaesthesia of Antarctic fish: haematology and blood chemistry. J. Fish Biol. 25: 
567-576. 



Acknowledgemenis 79 

Acknowledgements 

This thesis would not have been finalized without the help and support of numerous people. 

I am very much indebted to Prof. G. Hempel, who not only facilitated my comeback from a 

nearly three years assignment to Indonesia with an immediate employment at the Institut fÃ¼ 

PolarÃ¶kologi (M). He also accepted a for the IPÃ rather unusual, mainly physiological 

working concept and encouraged my cooperation with the Italian team. Finally, he put a lot 

of brain into the ecological aspects of this thesis. 

Prof. G. di Prisco introduced me patiently into difficult biochemical working procedures. The 

joint work in his laboratory at the Institute of Protein Biochemistry and Enzymology in 

Naples was most fruitful and yielded the majority of important results. 'Mille gracie' to him 

and his team 'BP2' for the excellent care and supervision also during the preparation of 

severai rnanuscripts for publication. 

Drs. G. Hubold and W. Hagen spent a lot of time for a critical review of the draft and for 

numerous discussions on the sense and non-sense of 'applied physiology' in an ecological 

Institute. Many thanks to them. 

Several colleagues and friends had their share in the successful finalization of this thesis. I 

would like to thank them all. 

Finally, my sincere thanks go to my dear wife Kathrin for her love and psychological support 

during my 'lows', parÅ¸cularl towards the end of this thesis. Our little daughter Kristin was 

not yet aware of the fact that her srnile inspired me many times. 




