Berichte 599 zur Polarund Meeresforschung

Reports on Polar and Marine Research

The Expedition of the Research Vessel "Maria S. Merian" to the Labrador Sea in 2009 (MSM12/2)

Edited by Gabriele Uenzelmann-Neben with contributions of the participants

ALFRED-WEGENER-INSTITUT FÜR POLAR- UND MEERESFORSCHUNG In der Helmholtz-Gemeinschaft D-27570 BREMERHAVEN Bundesrepublik Deutschland

ISSN 1866-3192

Hinweis

Die Berichte zur Polar- und Meeresforschung werden vom Alfred-Wegener-Institut für Polar-und Meeresforschung in Bremerhaven* in unregelmäßiger Abfolge herausgegeben.

Sie enthalten Beschreibungen und Ergebnisse der vom Institut (AWI) oder mit seiner Unterstützung durchgeführten Forschungsarbeiten in den Polargebieten und in den Meeren.

- Es werden veröffentlicht:
- Expeditionsberichte (inkl. Stationslisten und Routenkarten)
- Expeditionsergebnisse (inkl. Dissertationen)
- wissenschaftliche Ergebnisse der Antarktis-Stationen und anderer Forschungs-Stationen des AWI
- Berichte wissenschaftlicher Tagungen

Die Beiträge geben nicht notwendigerweise die Auffassung des Instituts wieder.

Notice

The Reports on Polar and Marine Research are issued by the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven*, Federal Republic of Germany. They appear in irregular intervals.

They contain descriptions and results of investigations in polar regions and in the seas either conducted by the Institute (AWI) or with its support.

The following items are published:

- expedition reports (incl. station lists and route maps)
- expedition results (incl. Ph.D. theses)
- scientific results of the Antarctic stations and of other AWI research stations
- reports on scientific meetings

The papers contained in the Reports do not necessarily reflect the opinion of the Institute.

The "Berichte zur Polar- und Meeresforschung" continue the former "Berichte zur Polarforschung"

* Anschrift / Address Alfred-Wegener-Institut Für Polar- und Meeresforschung D-27570 Bremerhaven Germany www.awi.de

Editor in charge: Dr. Horst Bornemann

Assistant editor: Birgit Chiaventone

Die "Berichte zur Polar- und Meeresforschung" (ISSN 1866-3192) werden ab 2008 ausschließlich als Open-Access-Publikation herausgegeben (URL: <u>http://epic.awi.de</u>).

Since 2008 the "Reports on Polar and Marine Research" (ISSN 1866-3192) are only available as web based open-access-publications (URL: <u>http://epic.awi.de</u>)

The Expedition of the Research Vessel "Maria S. Merian" to the Labrador Sea in 2009 (MSM12/2)

Edited by Gabriele Uenzelmann-Neben with contributions of the participants

Please cite or link this publication using the identifier hdl:10013/epic.33539 or http://hdl.handle.net/10013/epic.33539

ISSN 1866-3192

Cruise Report RV MARIA S. MERIAN Cruise MSM12-2

Reykjavik - Reykjavik 17. June – 13. July 2009 Chief Scientist: Gabriele Uenzelmann-Neben Captain: Karl Friedhelm von Staa

Gabriele Uenzelmann-Neben Alfred-Wegener- Institut für Polar- und Meeresforschung Am Alten Hafen 26 D-27558 Bremerhaven

Tel.: +49 471 48311208 Fax: +49 471 48311271 e-mail: <u>Gabriele.Uenzelmann-Neben@awi.de</u>

Contents

		Page
1.	Zusammenfassung / Summary	3
2.	Objectives	5
3.	Cruise Itinerary	7
4.	Geological Background	10
	4.1. Tectonic development since the break-up of Gondwana	10
	4.2. Sedimentation and current systems	10
	4.3. Short-term variation of sea-ice cover, productivity and bottom water	
	Circulation	11
	4.4. ODP Leg 105 Site 646 and IODP Expedition 303 Sites U1305, U1306,	
	and U1307	12
5.	Scientific Programmes - Preliminary Results	13
	5.1. Seismic reflection profiling	13
	5.1.1. Methods	13
	5.1.2. Seismic equipment	13
	5.1.2.1. Seismic sources, triggering and timing	13
	5.1.2.2. Multi-channel reflection recording system	14
	5.1.3. Preliminary Results	16
	5.2. Geology	18
	5.2.1. Geological sampling and methods applied	19
	5.2.1.1. Surface and near-surface sediments	19
	5.2.1.2. Long sediment cores	20
	5.2.1.3. Multi-Sensor Core Logging	21
	5.2.2. Preliminary results	26
	5.2.2.1. Characteristics of surface and near-surface sediments	26
	5.2.2.2. Main lithologies of long sediment cores	28
	5.3. Swath Bathymetry (SIMRAD)	29
	5.3.1. Method	29
	5.3.1.1. Operating frequency and coverage sector	29
	5.3.1.2. Transmission	30
	5.3.1.3. Transducer arrays	30
	5.3.2. Processing	30
	5.3.3. Preliminary results	31
	5.4. Marine Sediment Echosounding using PARASOUND	32
	5.4.1. Scientific Objectives	32 22
	5.4.2. Deta Acquisition and Management	32 27
	5.4.5. Data Acquisition and Management	57
	5.4.4. Examples of recorded data along the cruise track near geological	20
	Stations	39 41
	5.5 CTD System	41
	5.5.1 Mothed	4Z
		42

	5.5.2.	Equipment	43
	5.5.3.	Preliminarily Results	44
	5.6. ADC	Р	45
	5.6.1.	Method	45
	5.6.2.	Equipment	45
	5.6.3.	Preliminarily Results	46
6.	Reference	es	49
7.	Acknowle	edgements	51

Appendices

App. 1	Teilnehmende Institute/ Participating Institutions	52
App. 2	Fahrtteilnehmer / Cruise Participants	53
App. 3	Besatzung / Ship's Crew	54
App. 4	Stationsliste / Station List	55
App. 5	Beobachtung mariner Säuger / Marine Mammal Observations	62
App. 6	Seismische Parameter / Seismic recording parameters	66
App. 7	Kernbeschreibungen / Core descriptions	68

1. Zusammenfassung / Summary

Der Fahrtabschnitt MSM 12/2 vom 17.6. bis 13.7.2009 mit FS Maria S. Merian bestand aus reflexionsseismischen und geologischen Untersuchungen der Eirik Drift. einer Sedimentstruktur südlich Grönlands. Die Eirik Drift dokumentiert seit dem Miozän die Sedimentation vor Südwest-Grönland und bildet so ein Archiv für die Ablagerungsprozesse in diesem Gebiet, die durch den Western Boundary Undercurrent (WBUC), die grönländische Eisbedeckung und den Eintrag aus der Labrador See/Davis Strait geprägt wurden. Eine detaillierte Erfassung und Analyse der Struktur und Zusammensetzung der Eirik Drift mittels seismischer und geologischer Methoden und ein Anschluß an bestehende ODP und IODP Bohrungen (ODP Leg 105 und IODP Expedition 303) wurde benötigt, um Informationen über die Entwicklung des WBUC und Dimension und Ausdehnung/Rückzug des grönländischen Eises zu erhalten. Das reflexionsseismische Programm während der Expedition MSM 12/2 wurde derart gestaltet, dass die Struktur der Eirik Drift bis zum Basement sowie laterale Relokationen der Hauptablagerungsgebiete erfasst wurden. Es wurden insgesamt ~2000 km an hochauflösenden reflexionsseismischen Daten registriert. Parallel zu den seismischen Profilarbeiten wurden bathymetrische und Parasound Messungen durchgeführt. Über die Parasound Registrierungen sind dann signifikante Lokationen für geologische Beprobungen ausgewählt worden, die die Verbindung mit den hochauflösenden seismischen Untersuchungen zu einer Kombination verschiedene Zeitskalen und somit eine entscheidenden schärfen Schärfung des Verständnisses für die Entwicklung des Klimas in dieser Region ermöglichen. An 12 Lokationen wurden geologische Proben genommen. Ergänzt wurden die seismischen und geologischen Messungen durch 8 CTD Stationen und

ADCP Messungen im Gebiet der Eirik Drift.

Cruise leg MSM 12/2 with RV Maria S. Merian, leaving Reykjavik on 17.6., returning to Reykjavik on 13.7.2009, comprised seismic reflection and geological studies of the Eirik Drift, a sedimentary structure south of Greenland. The Eirik Drift has been documenting the sedimentation near southeast Greenland since the Miocene by forming an archive for the depositional processes in this region, which have been shaped by the Western Boundary Undercurrent (WBUC), the Greenland ice sheet and the material input from the Labrador Sea/Davis Strait. A detailed study and analysis of both structure and composition of the Eirik Drift via seismic and geologic methods as well as a correlation with results from ODP and IODP sites (ODP Leg 105 and IODP Expedition 303) was needed to lead to information on the development of the WBUC as well as the dimensions and expansion/retreat of the Greenland ice sheet. Seismic profiles were gathered, which capture the structure of the sediment drift down to basement and lateral relocations of the main depot centres. In total ~2000 km of high resolution seismic reflection data were recorded. Bathymetric and Parasound data were recorded parallel to the seismic profiling. Parasound data were used to pick significant locations for geological sampling. The incorporation of high resolution seismic reflection investigations with geologic sampling results in the combination of different timescales and much clearer understanding of the evolution of the climate southwest of Greenland. Geological sampling was carried out at 12 locations.

To complement the seismic and geological studies CTD measurements at 8 locations and ADCP measurements across the whole Eirik Drift were carried out.

2. Objectives

During this leg both the palaeo as well as the recent sedimentation processes and oceanographic conditions in the area of the Eirik Drift were studied. Proxies determined at recent and sub-recent samples will enable a better interpretation of IODP data and hence lead to a better reconstruction of the long-term development of sedimentation processes, the glacial history, and oceanographic conditions during the Neogene and Quaternary. We have aimed to solve the following questions:

- 1) What is the detailed structure of the Eirik Drift? Can we distinguish between contouritic and turbiditic deposition? Do the turbiditic deposits lead to information on the extension (frequency and dimension) of the Greenland ice shield? To answer those questions we needed to gather seismic data across the entire Eirik Drift from the shallower parts into the deep sea. The profiles further had to cover the locations of ODP and IODP sites.
- 2) Can we reconstruct the development of the Western Boundary Undercurrent (WBUC) in this region? Have modifications in the current system been documented in the sediment transport? In what way did those oceanographic modifications affect the sedimentary sequences? Why did the build-up of the Eirik Drift start with a delay of about 1.1 my relative to the oceanographic modifications (i.e. 4.5 Ma)?
- 3) Can we identify analogies to the build-up and the creation of sediment drifts on the southern hemisphere? Do chronological matches exist between the Eirik Drift and Drift 7 at the Antarctic Peninsula or the Agulhas Drift in the Transkei Basin? Can we identify global climatic and oceanographic events in those drift systems?
- 4) Can we detect short-term variations of oceanic currents (NADW), sea-ice extent, surface water productivity, and terrigenous input within the upper 15 m of the sedimentary column (Milankovich and sub-Milankovic cycles)? How do those parameters correlate with instabilities of the Greenland ice shield?

The project comprised geophysical and marin-geological operations in the area of the Eirik Drift (Fig. 2.1). Streamer, airguns, gravity corer, giant box corer, as well as PARASOUND and multi-beam systems were used. Seismic reflection profiles were gathered in order to study the sedimentary distribution in relation to the tectonic and oceanographic evolution (black lines in Fig. 2.1). Those profiles cover the whole Eirik Drift with the transition into the deep sea. Furthermore, the profiles cover the locations of ODP Leg 105 Site 646 and IODP Expedition 303 Sites 1305, 1306, and 1307.

The marin-geological programme concentrated on sampling the near-surface sediments (0-15 m) using giant box corer and gravity corer. Undisturbed sediments not affected by e.g. turbidity currents were sampled. Sample locations were picked based on PARASOUND recordings, which were gathered parallel to the seismic profiling. This saved on ship time. The cores were opened already during the cruise, described and sampled.

Fig. 2.1: Ship track of RV MARIA S. MERIAN cruise MSM12-2 in the Labrador Sea with locations of seismic profiles (black lines) and geological sampling (red dots) marked.

Fig. 2.2: The scientific party of RV MARIA S. MERIAN cruise MSM12-2 (Photo Reinhard Müller).

3. Cruise Itinerary

(G. Uenzelmann-Neben)

date	approx. board time (UTC)	programme and event	weather
17.6.	8:00-22:00	participants go on-board RV Maria S Merian;	fine
		Loading of containers and	
		streamer winch; unpacking	
		and installation of	
		equipment; safety	
10 6	0.00 damantuma	instructions	fina, increasing winds
18.0.	9.00 departure	continued installation of	Time, increasing winds
	пош кеукјачк	procedure	
19.6.	13:00-19:30	continued installation of	rain; medium winds
		equipment; test of streamer	
		and airguns	
20.6.		approach to working area	stormy conditions, high swell
21.6	16:00	Multibeam and	stormy conditions; high
		PARASOUND – start of	swell
		profiling	
22.6.	6:08-7:26	CID/rosette sampler;	medium winds and
	0.15	deployment of streamer	swell
	8.13 10.13	start profile A WI	
	10.15	20090001	
23.6.		continued seismic profiling	medium winds and swell
24.6.		continued seismic profiling	medium winds and swell
25.6.	10:49	end of profile; retrieval of	increasing winds; high
		streamer and airguns;	swell
_	14:32-16:47	CDT/rosette sampler	
26.6.	16:39-	Gravity corer and giant box	strong winds and swell
27 (4.1.4	corer	1 • • 1 1• 1
27.6.	-4:14	Gravity corer and giant box	decreasing winds; high
	5.12	Doployment of streamer	swell
	5.45	and airguns.	
	7.14	start of profile AWI-	
	,	20090005	
28.6.		continued seismic profiling	light air; low swell
29.6.	13:35	end of profile; retrieval of	fine; low swell
		streamer and airguns;	
	17:39-19:56	CTD/rosette sampler;	
	20:14-23:33	Gravity corer and giant box	
		corer	

30.6.	1:50-10:29	Gravity corer and giant box increasing winds a	
		corer;	swell
	11:49	deployment of streamer	
		and airguns;	
	13:49	start of profile AWI-	
		20090007	
01.7.		continued seismic profiling	strong winds and swell
02.7.	1:37	end of profile; retrieval of	fine; low swell
	5 3 0 5 10	streamer and airguns;	
	5:38-7:19	CTD/rosette sampler;	
	8:04-12:03	Gravity corer and giant box	
	14.50 16.22	corer;	
	14:30-10:22	Cid D/losette sampler,	
	10.51-	corer	
03.7	-1:01	Giant box corer and gravity	fine: low swell
00.71	1.01	corer:	
	6:09	deployment of streamer	
		and airguns;	
	8:09	start profile AWI-	
		20090010	
04.7.		continued seismic profiling	fine; low swell
05.7.		continued seismic profiling	medium winds and
			swell
06.7.	10:41	end of profile; retrieval of	medium winds and
		streamer and airguns;	swell
	14:30-16:51	CD/rosette sampler;	
	16:57-23:55	Gravity corer and giant box	
07.7	7.72 8.51	CTD/resette sempler:	storm: yory high swall
07.7.	7.23-8.34 9.10-10.20	Gravity corer and giant box	(10 m)
	9.10-10.20	corer	
08.7		no activity due to	storm: very high swell
00.7.		extremely bad weather	(10 m)
09.7.	8:01-10:33	Gravity corer and giant box	medium winds and
		corer;	swell
	12:15-14:08	CTD/rosette sampler;	
	14:45-20:12	Multibeam calibration	
		survey;	
		end of scientific	
		programme	
10.7.		de-installation and packing	medium winds and
		of equipment; transit to	swell
		Reykjavik	
11.7.	16:00	end of multibeam and	medium winds and
10.7		PARASOUND profiling	swell
12.7.	9:00	Pilot on board; enter	tine; low winds
		Keykjavik;	

	-18:00	Packing of equipment	
13.7	9:00	Unloading of containers	fine; low winds
		and streamer winch;	
	13:00	departure of participants	

4. Geological Background

(G. Uenzelmann-Neben, R. Stein)

4.1 Tectonic development since the break-up of Gondwana

During the late Cretaceous (anomaly 27, 63 Ma) rifting commenced in the southern Labrador Sea between the Precambrian blocks of Greenland and the Canadian Labrador and Baffin Islands. Rifting progressed into the northern Labrador Sea during the Paleocene and ceased in the Davis Strait and Baffin Bay in Eocene times (anomaly 20, 45 Ma, Chalmers and Pulvertaft, 2001). Baffin Bay and the Labrador Sea are connected via the Davis Strait. Here, a shallow sill prevents an exchange of deep water masses between the two ocean basins (Srivastava and Arthur, 1989). It is not clear whether Davis Strait ever was deep enough for an exchange of deep water masses.

According to the few studies published, the structure of the Greenland continental margin is extremely variable. Chian and Louden (1992) see no evidence for seismic high velocity zones in the deeper crust of the southern and central Labrador Sea and hence no indications for underplated magmatic layers or intrusions. In contrast to this, seismic studies by Gohl et al. (1991) and Gohl and Smithson (1993) show an up to 8 km thick lower crust farther north, which exhibits extremely high velocities of 7.5-7.8 km/s. This high velocity zone maybe related to the hot spot magmatism postulated for Davis Strait, which is also inferred to have created the volcanic of Davis Strait and Baffin Bay and which is considered to have migrated eastwards towards Iceland (White and McKenzie, 1989).

4.2 Sedimentation and current systems

The circulation of deep water masses in the Labrador Sea interacts closely with the North Atlantic and important global climatic and palaeoceanographic events (Fig 4.1).

ODP Leg 105 Site 646 has been drilled down to a depth of 766 mbsf on the western flank of the Eirik Drift in order to study this (Srivastava et al., 1987; Srivastava et al., 1989). 3 further sites were drilled as part of IODP Expedition 303 (Sites U1305, U1306, and U1307; Expedition 303 Scientists, 2006a; Expedition 303 Scientists, 2006b; Expedition 303 Scientists, 2006c; Expedition 303 Scientists, 2006d). From middle Eocene to late Miocene the basement troughs were filled with sediments. The base of the above lying unit is charactised by a double-reflector R3/R4. This reflector was dated as late Miocene (7.5 Ma) and marks a change in sedimentation rates (Srivastava et al., 1987). This has been attributed to erosion by currents. A modification of the bottom current regime 5.6 Ma led to the formation of reflector R2 (Arthur et al., 1989). Apart from this no current controlled sedimentation could be identified for the late Miocene-early Pliocene.

Strong modifications of the current system occurred at 4.5 Ma (early/middle Pliocene) leading to the formation of a sediment drift. It has been unclear where the nucleus of the drift lies and whether the drift has been continuously built up from e.g. North to South or East to West. These points comprise important hints with respect to direction and intensity of the generating current and a possible recirculation via the Labrador Sea.

Fig. 4.1: Current system in the North Atlantic, schematic.

4.3 Short-term variation of sea-ice cover, productivity and bottom water circulation

The study of surface samples of ODP Leg 105 Site 646 (0-20m) has shown that the sediments clearly reflect glacial-interglacial cycles in stable oxygen isotope values and the contents of organic matter and dinoflagellates, which is a result of the variability in sea-ice cover and surface water productivity (Aksu et al., 1989; Aksu and Hillaire-Marcel, 1989; Stein, 1991; Stein and Stax, 1991). The low chronological resolution unfortunately did not allow any interpretation with respect to short-term variability of the palaeoenvironment as is being discussed presently (e.g. 1500-year cycles) (Bond et al., 2001). Detailled studies of the grain size distribution (especially the silt fraction) have shown that grain sizes represent strong proxies for the reconstruction of the velocity of the bottom current (Bianchi and McCave, 1999).

4.4 ODP Leg 105 Site 646 and IODP Expedition 303 Sites U1305, U1306, and U1307

Site 646 of ODP Leg 105 and IODP Expedition 303 Sites U1305, U1306, and U1307 have been drilled on the Eirik Drift. This way lithological and geochemical information could be gathered for the sedimentary column down to 766 mbsf (Site 646). The oldest sediments sampled were found to be of late Miocene (8.4 Ma) age (Shipboard Scientific Party, 1987; Shipboard Scientific Party, 2005).

Reflectors R2 and R3/R4 could be drilled at Site 646 in a depth of 520 mbsf and 680 mbsf, resp. Lithological-geochemical parameters show significant changes in temperature, bottom water characteristics and intensity of the deep circulation for these depths (Shipboard Scientific Party, 1987). IODP Expedition 303 Sites U1305, U1306, and U1307 also form a rich archive with respect to environmental changes during instabilities of the ice sheets, to the history of surface and deep currents as well as the Western Boundary Current WBUC, which contributes to the North Atlantic Deep Water NADW (Expedition 303 Scientists, 2006a; Shipboard Scientific Party, 2005)

Down-hole logs exist for ODP Leg 105 Site 646 and IODP Expedition Site 1305 sites. A sonic log is only available for Site 646, but density, porosity and NGR logs have been gathered for both sites. Physical properties were measured for all cores. This way, the seismic data can be correlated with the geological information. Age-depth models via biostratigraphic, magnetostratigraphic and oxygen isotope data further allow a chronological order of the seismic horizons.

5. Scientific Programmes - Preliminary Results

5.1 Seismic reflection profiling

(G. Uenzelmann-Neben, E. Weigelt, T. Eggers, B. Baasch, R. Freibothe, M. Kordanska, B. Liss, A. Obermann)

5.1.1 Methods

The application of seismic methods was the primary operational objective of MSM 12/2 in order to obtain information on the sedimentary distribution in the area of the Eirik Drift. We used a standard multi-channel seismic reflection technique to image the outline and reflectivity characteristics of the sedimentary layers and the structure of the sub-sedimentary basement and lower crust by recording the returning near-vertical wave field. Figure 5.1 illustrates the principles of this technique.

5.1.2 Seismic equipment

5.1.2.1 Seismic sources, triggering and timing

We used a cluster of 4 GI-guns to resolve the sedimentary layers. A single GI-GunTM is made of two independent airguns within the same body. The first airgun ("Generator") produces the primary pulse, while the second airgun ("Injector") is used to control the oscillation of the bubble produced by the "Generator". We used the "Generator" with a volume of 0.72 litres (45 in³) and fired the "Injector" (1.68 litres = 105 in³) with a delay of 33 ms. This leads to an almost bubble-free signal. The guns were towed 30 m behind the vessel in 2 m depth and fired every 10 s (~25 m shot interval).

Fig. 5.1: Principle of marine seismic reflection surveying.

Seismic data acquisition requires a very precise timing system, because seismic sources and recordings systems must by synchronised. A combined electric trigger-clock system was in operation in order (1) to provide the firing signal for the electric airgun valves, and (2) to provide the time-control of the seismic data recording. Due to the variable time difference in the NMEA format of the ship-provided clock and the DVS system, a separate Meinberg GPS clock was used with an antenna mounted on the upper deck. The clock provides UTC date and time (minute and second) pulses.

In accordance with the *Guidelines to Environmental Impact assessment of Seismic Activities in Greenland Waters* provided with the research permit, an observer constantly visually monitored the area in a radius of 500 m around the vessel for possible marine mammal appearance before and during seismic profiling. The seismic operations were interrupted when marine mammals were sighted (see Appendix 6). Airguns were fired with gradually increasing working pressure (ramping up) at the beginning of a profile and after shot interruptions.

5.1.2.2 Multi-channel reflection recording system

For multi-channel reflection data acquisition, a complete digital seismic streamer and recording system was used. The system consists of a large capacity, fully integrated, high resolution marine seismic data acquisition system (SERCEL SEAL^M) which is composed of both onboard and in-sea equipment (Fig. 5.2). The streamer is a 240-channel hydrophone array which is coupled to the onboard recorder via a fibre-optic tow leader and a deck lead. The data collected by the hydrophone array is firstly converted from an analogue signal to digital via an A/D converter and then converted to a 24-bit complement format at 0.25 ms sample rate by a DSP. The data is routed to a Line Acquisition Unit Marine (LAUM) at this point, one of these being located every five Acquisition Line Sections or 750 m. The LAUM decimates, filters and compresses the data before routing them through the tow leader and deck lead to the on-board equipment.

The coupling of the streamer with the Control Module (CMXL) is made via the Deck Cable Crossing Unit (DCXU) which also acts as a LAUM for the first 60 channels of the streamer. The CMXL decompresses, demultiplexes and then performs IEEE 32-bit conversion to the data. The data are collected via a network switch and converted to SEGD by the PRM, the PRM being a processor software module used for formatting data to and from the cartridge drives, the plotters and Seapro QCTM.

All system parameters can be set through the Human Computer Interface (HCI) which displays the systems activity such as print parameters, log files, high resolution graphic display and test results.

Cable depth keeping was monitored on DigicourseTM software, and adjustment to depths was made with DigibirdsTM, Model 5010. The DigicourseTM software gives a continuously updated graphical display of depths and wing angles via the DigibirdsTM which are situated at 300 m intervals along the streamer.

Fig. 5.2: SERCEL SEAL[™] digital multichannel seismic system and the recordings units.

Acquisition Line Section Spec.	
Length	150 m
Channels	12
Phones/group	16
Group length	12.5 m
Sensitivity	20 V/Bar open
	ended
Capacity	256 µf

Table 5.1:Specification of SEAL system.

The data were recorded with the following parameters (also Appendix 7):

Profile Name	Active Length	Lead-in	Record Length	Sample Rate
AWI-20090001	3000 m	191 m	9 s	1 ms
AWI-20090002	3000 m	191 m	9 s	1 ms
AWI-20090003	3000 m	191 m	9 s	1 ms
AWI-20090004	3000 m	191 m	9 s	1 ms
AWI-20090005	3000 m	191 m	9 s	1 ms

AWI-20090006	3000 m	191 m	9 s	1 ms
AWI-20090007	3000 m	191 m	9 s	1 ms
AWI-20090008	3000 m	191 m	9 s	1 ms
AWI-20090009	3000 m	191 m	9 s	1 ms
AWI-20090010	3000 m	191 m	9 s	1 ms
AWI-20090011	3000 m	191 m	9 s	1 ms
AWI-20090012	3000 m	191 m	9 s	1 ms
AWI-20090013	3000 m	191 m	9 s	1 ms
AWI-20090014	2250 m	191 m	9 s	1 ms

 Table 5.2:
 Brief description of seismic recording parameters.

Fig. 5.3: Bathymetric map of the Eirik Drift with locations of the seismic lines in black. Yellow stars show the locations of ODP Leg 105 Site 646 and IODP Expedition 303 Sites U1305, U1306, and U1307.

5.1.3 Preliminary Results

As detailed seismic processing is time-consuming and could not be carried out on board, only a first, preliminary interpretation could be performed on board during the cruise.

The seismic profiles cover the whole area of the Eirik Drift into the adjacent deep sea (Fig. 5.3). The drift itself can be easily recognized in its topographic elevation (Fig. 5.4). It

comprises a sedimentary column of up to 2 s TWT (~2 km). The drift is underlain by oceanic basement with several basement highs. Those basement highs are up to 10 km in width and rise 750-1000 ms above the surrounding basement. In the southwestern area of investigation we observed one basement high, which pierced the seafloor (Fig. 5.5). It is assumed that these western basement highs form an elongated basement ridge. The sedimentary column is disturbed in the vicinity of these basement highs. Faults as well as chimneys or pipes indicating gas can be observed in the sedimentary column adjacent to the basement highs. Since the sedimentary layers up to the surface are disturbed (Fig. 5.5) we assume that the magmatic activity is young in age. A quick correlation with information from ODP Leg 105 Site 646 shows that at least the layers up to reflector R2 (late Miocene/early Pliocene, 5.6 Ma, (Shipboard Scientific Party, 1987; Srivastava and Arthur, 1989), in parts even Pliocene layers are affected by the magmatic activity. This is in contrast to the fact that spreading in the Labrador Sea has been identified to have ceased at 45 Ma (anomaly 20, Chalmers and Pulvertaft, 2001).

Fig. 5.4: Line AWI-20090014 showing the topography of the Eirik Drift.

Sedimentation appears to have started by filling the basement topography. This lower sedimentary sequence is up to 1 s TWT thick and is characterized by only few weak amplitude reflections. Reflectors R5 and R3/R4 can be identified (Srivastava and Arthur, 1989). On top of this nearly reflection free layer a well layered unit can be observed. Drift build-up appears to have begun with deposition of this unit. We can identify at least three drift bodies: a) one elongate drift body forming the topographic high in the east with the steep flank towards the west, b) a second elongate drift body deposited immediately west of drift body A, also with the steep flank towards the west, and c) an attached drift body on top of drift body B (Fig. 5.6). It appears that the eastern drift A was formed first followed by a shift in the generating current to west. Then, drift B was created. A phase of strong erosion followed, after which the attached drift was deposited on top of drift B. On a few seismic lines we can further distinguish a fourth drift body eastwards of drift A, which shows the steep flank in the east (Fig. 5.7). The current building up the Eirik Drift obviously took a path from the north southwards along the eastern flank of the drift and then was directed northwestwards following the topography of the drift. While its path was relatively stable in the east the formation of several drift bodies in the west points towards a relocation of the current's path there.

Fig. 5.5: Line AWI-20090006 showing the basement highs in the western part of the Eirik Drift and Mt Maria S Merian.

Fig. 5.6: Line AWI-20090002. Note the three different drift bodies forming the Eirik Drift.

5.2 Geology

(R. Stein, F. Niessen, D. Schmidt, D. Naafs, C. Peters, C. Saukel, R. Sommerfeldt)

As outlined in Chapter 4.3, the overall goals of the marine-geological research programme have concentrates on high-resolution studies of changes in palaeoclimate, palaeoceanic circulation, palaeoproductivity, and sea-ice distribution in the Eirik Drift/Labrador Sea area. During MARIA S. MERIAN Expedition MSM 12/2, we focussed our station work on areas of the western and eastern flanks as well as on top of Eirik Drift, including coring at the locations of ODP Site 646 and IODP sites U1305, U1306, and U1307 (Fig. 5.8). Coring

positions were collected carefully using the hull-mounted PARASOUND profiling system (see Chapter 5.4 for details) to avoid areas of sediment redeposition (turbidites and slumps) and erosion. Shipboard analyses performed on the sediments and preliminary results are presented below.

5.2.1 Geological sampling and methods applied

In total, geological coring was carried out at 12 stations, using the Giant Box Corer (GKG) and the Gravity Corer (SL) (Table 5.3).

Fig. 5.7: Eastern part of line AWI-20090005.

5.2.1.1 Surface and near-surface sediments

Surface and near-surface sediment sampling was carried out by using a Giant Box Corer. The Giant Box Corer (weight of ca. 500 kg; volume of sample 50*50*60 cm; manufactured by Fa. Wuttke, Henstedt-Ulzburg, Germany) was successfully used 10 times at 10 stations. Twice there was no recovery due to technical problems. Recovery of the GKG cores ranges between ca. 25 and 50 cm. From the Box Corer surface sediments as well as three subcores for sedimentology (AWI), geochemistry (AWI), and foraminifers (Bristol University) and an archive box (AWI) were taken. The following samples were obtained from the surface sediments:

$20x10 \text{ cm}^2$	(200 cm ³) Archive (AWI)
$10 \text{x} 10 \text{ cm}^2$	(100 cm ³) Org. Geochemistry (AWI) (deep-frozen)
$10x10 \text{ cm}^2$	(100 cm ³) Sedimentology (AWI)

10x10 cm²(100 cm³) Foraminifers (Bristol University)10x10 cm²(100 cm³) Palynomorphs (GEOTOP, Canada)

Photographs of the surface and the sediment section from all GKGs were taken. Lithology was preliminary described visually for all box cores. Colour of surface sediments (0-1 cm) and subcores was described using the Munsell Soil Colour Chart (1954). Sediment slabs for X-radiography were taken as well.

In order to estimate the abundance of sediment components within the sand fraction, selected samples were wet-sieved with a mesh of 63 μ m to separate the coarse fraction >63 μ m. The coarse fraction was dried at 60°C. The composition of the coarse fraction was estimated using a binocular microscope (see Chapter 5.2.2 for some results).

Fig. 5.8: Map showing the location of geological stations carried out during Expedition MSM12/2. In addition, locations of ODP Site 646 and IODP sites U1305, U1306, and U1307 are shown.

5.2.1.2 Long sediment cores

Long sediment cores were taken by the Gravity Corer. The Gravity Corer (GC or "Schwerelot", SL) has a penetration weight of 1.5 t. It was successfully used with variable barrel lengths of 10 or 15 m at all 12 stations. The recovery of the gravity corer varied between about 3 and 15 m (Table 5.3; Fig. 5.9).

All gravity cores were logged before they were opened using the Multi-Sensor Core Logger (MSCL) (see Chapter 5.2.2). After opening, photography were taken from both the archive and working halves. As for the GKG, sediment slabs (250x100x8mm) were taken from all opened cores for X-ray photography. That means, plastic slabs were slowly pushed into the scraped and smoothed sediment surface and carefully removed. These slabs were sealed in a plastic cover and stored for later X-radiography to be done at AWI.

From the archive halves, a visual core description was carried out. Colours were identified using the Munsell Soil Colour Chart (1954). A selected set of sediment cores was sampled for smear-slide analyses. Smear-slides were investigated under the light microscope. Smear-slides description was performed for rough evaluation of grain-size composition, preliminary determination of mineralogical composition (mainly quartz, feldspars, detrital carbonate, etc.) and content of biogenic components (foraminifers, coccoliths, diatoms, sponge spicules). On a few number of samples, a coarse-fraction analysis was carried out.

5.2.1.3 Multi-Sensor Core Logging

Whole-core physical properties provide initial core characterization with a very high vertical resolution. Physical properties can be used to define and interpret stratigraphical patterns, including a comparison with lithology and other properties such as data obtained from sediment color or XRF scanning. In combination with other data down-core pattern of physical properties provide a powerful tool for lateral core correlation. The latter is beyond the scope of this report and will be carried out after the cruise. Physical properties are also useful to link the cores to high-resolution echosounding profiles obtained by PARASOUND thereby aiding the projection of core data from a single spot into larger spatial and temporal scales.

Measurements in the ship laboratory included non-destructive, continuous determinations of wet bulk density (WBD), P-wave velocity (V_P) and magnetic susceptibility (MS) at 10 mm intervals on all cores obtained during the cruise. The Multi Sensor Core Logger (MSCL, GEOTEK Ltd., UK) was used to measure temperature, core diameter, P-wave travel time, gamma-ray attenuation and MS. The technical specifications of the MSCL system are summarized in Table 5.4. The principle of logging cores is described in more detail in the GEOTEK manual "Multi-Sensor Core Logging", which can be downloaded from the web (http://www.geotek.co.uk). The orientation of the P-wave and gamma sensors was horizontal. Gravity cores (SL) were measured in coring liners including end caps. A data example is given for core MSM-12/2-01 (Fig. 5.10)

Geometry: In order to convert raw data to density, velocity and volume susceptibility the geometry of the cores must be determined. Whereas for the calculation of density and velocity the core diameter (SL) is directly measured at the position of the V_P transducers, volume susceptibility is calculated from the mean core diameter per meter core as measured between the liner caps (see MS below). The distance between the V_P transducers were calibrated using plastic cylinders of known geometry.

WBD was determined from attenuation of a gamma-ray beam transmitted from a radioactive source (137 Cs). A beam collimator of 5 mm was used and the beam was focused through the core-centre into a gamma detector. To calculate density from gamma counts,

Geotek-MSCL software was used (<u>www.geotek.co.uk</u>), which applies a 2nd order polynomial function to describe the relationship between the natural logarithm of gamma counts per second and the product of density and thickness of the measured material. For calibration the three constants of the equation are determined empirically for each day by logging a standard core consisting of different proportions of aluminum and water as described in Best & Gunn (1999).

Station	Latitude	Longitude	WD(m)	Gear	Pen_SL	Rec_SL	Remarks
MSM12/2-01-01	58.21	-48.37	3450	SL-10	10	9.68	ODP Site 646
MSM12/2-01-02	58.21	-48.37	3451	GKG			ODP Site 646
MSM12/2-01-03	58.21	-48.37	3450	SL-10	10	9.34	ODP Site 646
MSM12/2-02-01	58.16	-47.87	3306	SL-10	10	9.81	
MSM12/2-02-02	58.16	-47.87	3307	GKG			
MSM12/2-03-01	57.48	-48.53		SL-10	10	9.88	U1305
MSM12/2-03-02	57.48	-48.53		GKG			U1305
MSM12/2-04-01	57.56	-48.60	3492	SL-10	10.2	9.96	Mt Merian
MSM12/2-04-02	57.56	-48.60		GKG			Mt Merian
MSM12/2-05-01	57.54	-48.74	3489	SL-15	15	14.94	High-resolution section Holocene
MSM12/2-05-02	57.54	-48.74		GKG			GKG nicht ausgelöst
MSM12/2-06-01	58.51	-46.40	2578	GKG			IODP U1307; GKG nicht ausgelöst
MSM12/2-06-02	58.51	-46.40	2579	SL-10	5	2.97	IODP U1307
MSM12/2-06-03	58.51	-46.40	2579	GKG			IODP U1307
MSM12/2-07-01	58.27	-45.64	2273	GKG			IODP U1306
MSM12/2-07-02	58.27	-45.64	2273	SL-10	10	9.53	IODP U1306
MSM12/2-08-01	58.60	-46.43	2563	GKG			High-resolution section (dose to U1307)
MSM12/2-08-02	58.60	-46.43	2563	SL-15	15	14.16	High-resolution section (dose to U1307)
MSM12/2-09-01	57.57	-44.75	3275	SL-15	15	14.53	High-resolution section
MSM12/2-09-02	57.57	-44.75	3275	GKG			
MSM12/2-10-01	57.60	-44.85	3193	GKG			
MSM12/2-10-02	57.60	-44.85	3192	SL-15	15	14.18	More condensed section
MSM12/2-11-01	58.24	-44.42	2384	SL-10	10	9.53	
MSM12/2-12-01	60.17	-40.12	2370	SL-15	14	12.75	
MSM12/2-12-02	60.17	-40.12	2370	GKG			

Table 5.3:Locations and gears of geological stations of Expedition MSM 12/2. Penetration and
recovery values of gravity cores are listed as well.

 V_P : The cores were stored in the laboratory for 24 hours prior to logging in order to let the sediments equilibrate with room temperature. Temperature was measured sporadically by a calibrated PT-100 sensor placed into the sediments near the end of each core section or otherwise in the laboratory. Temperatures ranged between 19 and 21°C. Whole-core P-wave velocities were calculated from the core diameter and travel time after subtraction of the P-wave travel time through the core liner wall (SL), transducer, electronic delay, and detection offset between the first arrival and second zero-crossing of the received waveform, where the travel time can be best detected. This travel-time offset was determined using a SL-liner filled with freshwater ($V_p = 1481$ m/s). P-wave velocities (V_P) were normalized to 20°C using the temperature logs.

$$V_P = V_{Pm} + 3 * (20 - tm)$$
 (iii)

where $V_{Pm} = P$ -wave velocity at measured temperature; tm = measured temperature.

MS on whole cores was measured in terms of SI units, using Bartington MS-2 meter loop sensors (Table 5.5). The sensor has been calibrated by Bartington and data output is MS (10⁻⁵). The meter was set to zero 100 mm before the core reached the MS sensor. After removing the last section of a core from the track, a zero-reading of the MS-2 meter was used to

monitor sensor drift. The drift ranged between 0 and \pm 2, which is less than 1 % of the maximum MS measured in the cores. Therefore no drift correction was applied. In order to calculate volume-specific susceptibility data are corrected for loop-sensor and core diameter as follows:

P-wave velocity and core diameter
Plate-transducer diameter: 4 cm
Transmitter pulse frequency: 500 kHz
Pulse repetition rate: 1 kHz
Received pulse resolution: 50 ns
Gate: 5000
Delay: 0 s
Density
Gamma ray source: Cs-137 (1983)
Activity: 356 MBq
Energy: 0.662 MeV
Collimator diameter: 5.0 mm
Gamma detector: Gammasearch2, Model SD302D, Ser. Nr. 3043, John Count Scientific
Ltd.,
10 s counting time
Magnetic susceptibility
Loop sensor: BARTINGTON MS-2C
Loop sensor diameter: 14 cm
Point sensor: BARTINGTON MS-2F
Alternating field frequency: 565 Hz, counting time 10 s, precision 0.1×10^{-5} (SI)
Magnetic field intensity: ca. 80 A/m RMS
Krel: 1.63 (SL, 12 cm core-ø), variable for KAL
counting time 10 s

Table 5.4: Technical specifications of the GEOTEK MSCL14.

MS (10^{-6} SI) = measured value (10^{-5} SI) / K-rel * 10

K-rel is a sensor-specific correction calculated from the diameter of the core over the diameter of the loop sensor as outlined in the Geotek MSCL manual (<u>www.geotec.co.uk</u>). We have used the empirical relationship of relative response to varying core and loop diameters outlined in the MSCL-Manual (<u>www.geotec.co.uk</u>):

$$\text{K-rel} = 4.8566 (\text{d/D})^2 - 3.0163 (\text{d/D}) + 0.6448$$

D is the diameter of the MS-2 meter core loop (140 mm) and d is the diameter of the core.

In addition, for a higher resolution, MS on split cores was measured using the MS-2 meter point sensor. Drift corrections were not applied. Sensor drifts per core were </= 1 and are thus negligible.

Fig. 5.9:

Recovery of the gravity cores (in cm). For location of cores see Figure 5.8.

Core	1	2	3	4	5
MSM12/2-01-01	Х	Х	Х	Х	Х
MSM12/2-01-03	Х	Х	Х		
MSM12/2-02-01	Х	Х		Х	
MSM12/2-03-01	Х	Х			
MSM12/2-04-01	Х	Х		Х	
MSM12/2-05-01	Х	Х			
MSM12/2-06-02	Х	Х			
MSM12/2-07-02	Х	Х			
MSM12/2-08-02	Х	Х			
MSM12/2-09-01	Х	Х			
MSM12/2-10-02	Х	Х			
MSM12/2-11-01	X	Х			
MSM12/2-12-01	Х	х			

Data acquisition and processing went through several steps:

- 1. MSCL Raw-data acquisition of whole cores using GEOTEK software.
- 2. First processing of whole-core data using GEOTEK software. This includes the calculation of core thickness, V_P , WBD and the removal of the liner caps from the depth scale. MS remained in raw-data state (10⁻⁵ SI).
- 3. Second processing of whole-core data using software Kaleidagraph. This includes a data quality control on calibration sections logged on top and below the bottom of the

core (20 cm liner filled with water) and a removal of these data from the core. It also includes data cleaning for effects caused by liner caps on V_P and WBD. In addition, MS is converted to volume MS using the average core thickness per core as "d" (see above), and the fractional porosity is calculated from WBD assuming constant grain density of 2.6 g cm⁻³ and constant pore-water density of 1.02 g cm⁻³.

- 4. MS raw-data acquisition on split cores using GEOTEK software.
- 5. First processing of whole-core data using GEOTEK software. This includes the removal of the liner caps from the depth scale. MS remained in raw-data state (10^{-5} SI) .

Fig. 5.10:

Physical-property logs from core MSM-12/2-01-01. MS data are instrumental data (10-5 SI). Point sensor data are plotted on a logarithmic scale to make small-scale fluctuations not resolved in the loop data better visible.

There was not enough time to carry out full processing for all the cores logged during the cruise. Also, not all of the slit cores were logged and not all of the cores were split. The status of data acquisition and processing is summarized in Table 5.5.

The correlation of loop sensor and point sensor MS is good as demonstrated for cores MSM-12/-01 and 03 (Fig. 5.11). However, a perfect correlation cannot be expected because the loop data is obtained from a larger core volume as the point data so that data from different material are compared. Also the effect of clasts in the core is more pronounced in loop data than in point data, because clasts may have been removed after splitting or are not directly measured with the point sensor. On the other hand, small-scale MS peaks are more pronounced in the point-sensor data because of the better sensor resolution. For this reason it

is not straight forward to calculate volume-specific susceptibility from point-sensor data. As an approximation for data conversion it is suggested to use empirical linear regressions according to Figure 5.11 for each core or for the entire data set from the cruise once available. The reasons explained above, the correlation is slightly better if data of the large peaks are removed from the linear regression (Fig. 5.11).

5.2.2 Preliminary results

5.2.2.1 Characteristics of surface and near-surface sediments

The box corers of MS12/2 were recovered in three regions, on the western flank of the drift, on top of the drift and on the eastern flank. The box core sections from sites on the western flank (MSM12/2-01-02, MSM12/2-02-02 and MSM12/2-03-02) can be divided into two major lithologies. At the surface, some gneiss and sandstone dropstones, smooth shelled bivalves, a scaphopod, xenophyophora and a phytodetritus layer were found. The top layer is a light olive-brown sandy silty clay with foraminifers and sponge spicules. The unit is interrupted by olive brown layers with the same lithology. The underlying unit is separated by a sharp contact at 23 cm at Site 01, at 14 cm at Site 02, and at 23 cm at Site 3. The lower unit is an olive gray to gray clay with foraminifers and very abundant bioturbation of non-branching burrows with up to 3 cm long blank worm-linings.

Fig. 5.11: Correlation of MS data measured with a loop sensor and converted to volumespecific MS with MS data measured with a point sensor.

The sand fraction of the top layer is dominated by well-preserved planktic foraminifers, namely *Neogloboquadrina pachyderma* sinistra with a minor contribution of *N. incompta*, *Globigerina bulloides*, *Turborotalia quinqueloba* and *Globigerinita uvula*, a typical fauna for the warm periods of this region. The fauna displays a distinct size bimodality as already described for the IODP Leg 303 sites (Channell et al., 2006). The benthic foraminifers fauna is divers and contains, amongst others, *Epistominella exigua* and *Melonis barleanum*, *Oridorsalis umbonatus*, *Gyroidina soldanii*, *Fursenkiona* spp. and an abundant and diverse agglutinating benthic fauna with Rhabdammina spp., *Reophax* spp. and *Trochamina* spp. The darker layer contains abundant *G. bulloides* and the benthic fauna *Pyrgo murhina*, *Pullenia*

and *Cibicidoides wuellerstorfi*. The non-foraminiferal component is dominated by mainly quartz gravel and sponge spicules with accessory ostracods, radiolarians, diatoms and volcanic glass. The lower unit is impoverished in its diversity and just moderately well-preserved, and contains of *N. pachyderma* (s) with *Pullenia* spp. and *Uvigerina* spp..

Fig. 5.12: Simplified lithological columns of sediment cores opened and described during expedition MSM12/2. 01 = MSM12/2-01, 02 = MSM12/2-02, etc. At core MSM12/2-1, three lithological units I to III were distinguished.

Site MSM12/2-04-02 is distinctly different from all the other sites in the area. The surface contains some worm burrows, a few manganese coated dropstones and a few small 1cm smooth bivalve shells. The olive brown clay to silty clay at the top is barren of siliceous fossils and small foraminiferal specimens, suggesting dissolution and stronger bottom currents. The fauna consist of *N. pachyderma* (s), *N. incompta* and *T. quinqueloba* suggesting a lack of Holocene deposition. The bottom unit is a dark grayish brown clay, partly finely layered, with *N. pachyderma* and *N. incompta* plus sponge spicules, diatoms, quartz, pyrite, and volcanic glass.

The surface sediments on top of the drift and along the eastern flank are very similar. The surface is covered by abundant manganese-coated dropstones, gravel and pebble size, several of which are colonised by several species of sponges. Benthic foraminifers, e.g. *P. murhina* and *Rhabdamina* spp., are abundant on the surface. Additionally, (sapellid) worms, brittle stars, gastropods, and bivalves were found. Several of the sites are covered by a phyto-detritus layer. The top unit of the box corers consists of an olive brown to light olive brown gravely clay with foraminifers, sponge spicules and volcanic glass. Minor traces of radiolarians and diatoms are present in all the surface samples. The foraminiferal assemblages reflect typical Holocene assemblages with *N. pachyderma* (s), with minor amounts of *N. incompata*, *G. bulloides*, *T. quinqueloba* and traces of *G. glutinata* and one specimens of *Globorotalia scitula*. Site MSM12/2-07-01 contains more sand than gravel, partly with larger isolated drop stones and sponge spicules.

Site MSM12/2-06-03 surface shows much larger abundance of dropstones with sizes up to 6 cm. Here, the surface is consolidated and shows signs of bottom currents. The foraminiferal fauna has a very broad range of preservation ranging from well-preserved to moderately well-preserved with Fe coatings, suggesting reworking. The lack of small specimens additionally points towards winnowing. The planktic fauna is dominated by N. *pachyderma* (s) and *N. incompta*, with minor amounts of *G. bulloides*, *G. glutinata*, *T. humilis* and *G.* cf. *umbilicata* the latter suggesting reworking of older material. Reworking is also suggested by the broad range of preservational states at site MSM12/2-09-02. Near the base of this box core at 10 to 20 cm, a large, completely disintegrated volcanic bomb was found.

Site MSM12/2-12-02 is furthest to the north nearest to Iceland. The surface is dominated by volcanic glass with the planktic foraminiferal fauna *N. pachyderma* s and *N. incompta*. Sponge spicules and diatoms are rare in these samples.

5.2.2.2 Main lithologies of long sediment cores

The classification of the major lithologies is mainly based on the visual core description, i.e., sediment colour, structure and grain size. As the number of smear slides from each core is very limited, main lithologies identified by visual core description are mainly terrigenous-type sediments (i.e., silty clay to sandy silty clay), i.e., biogenic components (especially nannofossils) are probably underestimated and – thus – do not appear in the name of the sediment.

The detailed lithological core descriptions of all opened gravity cores are shown in Appendix 8. In general, three main types of lithologies could be distinguished: (1) finedgrained sediments (mainly silty clay) of varying colours, (2) coarser-grained sediments (mainly sandy silty clay and diamicton), and (3) foraminifera-rich silty clays (Fig. 5.12). Occasionally, large-sized dropstones with diameters >3 cm were found. The coarser-grained, more sandy intervals often show fining-upwards cycles. Whereas at cores MSM12/2-01, MSM12/2-05, and MSM12/2-10 the upper 2.5 to >6 m mainly consist of silty clays, at all other cores, i.e., MSM12/2-02, MSM12/2-04, MSM12/2-06, MSM12/2-07, and MSM12/2-11, the uppermost part of the sections are composed of coarser-grained sediments (Fig. 5.12). Cores MSM12/2-03 and MSM12/2-09, located close to cores MSM12/2-05 and MSM12/2-10 and not opened and described yet, do probably show a similar fine-grained lithology in the open part, as supported by the MSCL raw data.

Based on the correlation of the magnetic susceptibility (MS) record of cores MSM12/2-01, MSM12/2-03, and MSM12/2-05 with MS records from ODP Site 646 (Hall et al., 1989) and IODP Site U1305 (Channell et al., 2006) as well as other piston cores from this area (Stoner et al., 1995; Stoner et al., 1996; Turon et al., 1999), it is very probable that the upper fine-grained unit is of MIS 1 (postglacial to Holocene) age. That means, on the other hand, at cores having coarse-grained sediments on top, no (or only very thin) Holocene sediments were recovered.

At Core MSM12/2-01, three lithological units can be distinguished. Units I and III are composed of silty clays with some sand, whereas the intercalated Unit II is characterized by coarse-grained (sandy silty clays and dropstones) sediments (for details see core description in the annex). The coarsed-grained intervals (Fig. 5.12) clearly correlate with distinct maxima in density (Fig 5.10). Based on the very preliminary "age model" (see above), Unit II probably represents the last glacial MIS 2.

5.3 Swath Bathymetry (SIMRAD)

(J. Højdal)

The onboard R/V MARIA S. MERIAN bathymetric swath system comprises of following elements:

Multibeam Echosounder:	Kongsberg Simrad EM-120 12 kHz
Beamsteering sound velocity probe:	AML SV Probe (not functional)
Motion compensation:	Kongsberg Seatex SeaPath 200
Heading/gyro sensor:	Kongsberg Seatex SeaPath 200
Positioning	Primary antenna of Kongsberg Seatex SeaPath 200

Sound velocity profiles were provided by the CTD casts carried out by the participating oceanographer.

5.3.1 Method

5.3.1.1 Operating frequency and coverage sector

The nominal sonar frequency is 12 kHz with an angular coverage sector of up to 150 degrees and 191 beams per ping. During this cruise the swath coverage sector was reduced to 60 degrees on either side during normal sea conditions and to 50 degrees on either side in sea states higher than 4. The beam spacing is normally equidistant with equiangular available (not used on this cruise).

5.3.1.2 Transmission

The transmit fan is split in several individual sectors with independent active steering according to vessel roll, pitch and yaw. This place all soundings on a "best fit" to a line perpendicular to the survey line, thus ensuring a uniform sampling of the bottom and 100% coverage. The sectors are frequency coded (11.25 to 12.60 kHz), and they are transmitted sequentially at each ping. The sector steering is taken into account when the position and depth of each sounding is calculated, as is the refraction due to the sound speed profile, vessel attitude and installation angles. Unfortunately the AML sound velocity probe was defect during the entire cruise with some reduction of the general data quality as the result.

Pulse length and range sampling rate are variable with depth for best resolution. The ping rate is mainly limited by the round trip travel time in the water up to a ping rate of 5 Hz. On the average water depth of approximately 2500 metres in the area of operations the ping rate was experienced to be less than 0.07 p/sec.

5.3.1.3 Transducer arrays

The EM 120 transducers are linear arrays in a Mills cross configuration with separate units for transmit and receive. The arrays are divided into modules. The number of modules used (and hence the beam width) is determining for the actual beam width of the system. The system in use was configured for 2 degrees along track and 2 degrees across track. A combination of phase and amplitude detection is used. The lack of an on-line sound velocity probe did however minimize the benefit of these features.

5.3.2 Processing

Raw data from the Kongsberg data acquisition software (SIS) were imported and converted to CARIS HIPS format. In CARIS the following procedures were followed for each segment of data (each segment is approximately 30 minutes of data acquisition):

A) Preliminary tidal model calculated for nearest known tidestation (Nanortalik/Greenland)

Prediction ATT Nanortalik (3437) Z ₀ height 1.380 Time zone - 3				
ATT	g°	H(m)		
M2	164	0.880		
S2	203	0.380		
K1	114	0.190		
01	077	0.110		

Table 5.6:Parameters used for computation of tidal model.

- B) Refraction correction from nearest obtained position of sound velocity profile.
- C) Swath reduction to +/- 60 degrees (to +/- 50 degrees in high sea state)
- D) Manual inspection of navigational quality
- E) Manual spike editing of individual swaths
- F) Export to various standard formats (FAU and XYZ)
- G) Export of centre beam positions in customized format as requested by the chief scientist.
- H) Area Spline cleaning of XYZ exports in QLOUD area cleaning software.
- Additional re-exports to FAU/XYZ with patch test alignment values obtain on the last day of the official part of the cruise is still outstanding but expected completed prior to arrival Reykjavik.

5.3.3 Preliminary results

The data has not yet been finally corrected for true tidal model or the complete refraction model, but in "numbers":

Number of "survey line kilometres":3450 KmArea covered (overlap has been extracted)24.450 Km²

Fig. 5.13: Coverage plot on completion on the 9th of July 2009.

5.4. Marine Sediment Echosounding using PARASOUND

(F. Niessen, B. Slaby, A. Fischel)

5.4.1 Scientific Objectives

Bottom and sub-bottom reflection patterns obtained by PARASOUND characterize the uppermost sediments of the Arctic Ocean in terms of their acoustic behaviour down to about 100 m below the sea floor. This can be used to study depositional environments in space and time, of which the uppermost sediments may also be sampled. The objectives of sediment echosounding during MS-12/2 were:

- to provide the data base for an acoustic facies interpretation of the younger most sediments of the Eirik Drift indicative for different bottom water currents and their spatial and temporal variability, and, thereby,
- to provide a high-resolution counterpart for the uppermost sections of seismic profiles recorded during the cruise,
- to select coring stations based on acoustic pattern and backscatter, and
- to obtain different pattern of high-resolution acoustic stratigraphy useful for lateral correlation over shorter and longer distances thereby aiding correlation of sediment cores retrieved during the cruise.

5.4.2 Technical Aspects and Modes of Operation

RV MARIA S. MERIAN is equipped with a Deep Sea Sediment Echo Sounder PARASOUND (ATLAS HYDROGRAPHIC, Bremen, Germany) DS III-P70 similar to the systems installed on other German RVs such as "Polarstern", "Meteor" and "Sonne". An overview about the system set up and operation of "PARASOUND DS III-P70" is given by Niessen et al. (Klages and Thiede, in prep)and Niessen et al. (Schiel, 2009).

The hull-mounted PARASOUND system generates two primary frequencies selectable between 18 and 23.5 kHz transmitting in a narrow beam of 4° at high power. As a result of the non-linear acoustic behavior of water, the so-called "Parametric Effect", two secondary harmonic frequencies are generated of which one is the difference (e.g. 4 kHz) and the other the sum (e.g. 40 kHz) of the two primary frequencies, respectively. As a result of the longer wave length, the lower parametric frequency allows sub-bottom penetration up to 200 m (depending on sediment conditions) with a vertical resolution of about 0.30 m. The primary advantage of parametric echosounders is based on the fact that the sediment-penetrating pulse is generated within the narrow beam of the primary frequencies thereby providing a very high lateral resolution compared to conventional 4 kHz-systems.

On RV MARIA S. MERIAN, PARASOUND DS III-P70 is controlled by two operator software packages plus server software running in the background. These processes are running simultaneously on a PC under "Windows XP". (i) ATLAS HYDROMAP CONTROL is used to run the system by an operator. The selected modes of operation, sounding options and ranges used during the cruise are summarized in Table 5.7. A list of abbreviations is given at the end of this chapter. (ii) ATLAS PARASTORE-3 is used by the operator for on-line visualization (processing) of received data on PC screen, for data storage and printing. It can also be used for replaying of recorded data, post-processing and further data storage in different output formats (PS3 and/or SEG-Y). For any further details the
reader is referred to the operator manuals of Atlas Hydromap Control (ATLAS_Hydrographic, 2007a) and Atlas Parastore (ATLAS_Hydrographic, 2007b) and some basic descriptions given by Niessen et al. (Schiel, 2009).

Used Settings	Selected Options	Selected Ranges
Mode of Operation	P-SBP/SBES	PHF, (SHF), SLF
Frequency	PHF	18.75 kHz
		(41.66 kHz) for testing
	SHF	only
	SLF	4.166 kHz
Pulselength	No. of Periods	2
	Length	0.5 ms
Transmission Source Level	Transmission Power	100%
	Transmission Voltage	159 V
Beam Steering	none	
Mode of Transmisson	Single Pulse	
	Quasi-Equidistant	Interval 400-1200 ms
Pulse Type	Continuous Wave	
Pulse Shape	Rectangular	
Receiver Band Width	Output Sample Rate (OSR)	6.1 kHz
	Band Width (% of OSR)	66%
Reception Shading	none	
System Depth Source	Fix Min/Max Depth Limit	Manual
		Other (EM-120)
		Controlled Atlas PHF
		Atlas Parastore
Water Velocity	C-Mean	Manual 1500 m/s
	C-Keel	Manual 1500 m/s
Data Recording	PHF	Full Profile
	SLF	Full Profile

Table 5.7:Settings of PARASOUND operation used on MSM-12/2.

date 2009	From UTC	Until UTC	duration (h)	reason
19.06.	09:33	09:48	0.25	- SPM is in Error State
				- Driver 'ATLAS PARASOUND DS P70' is
				not sending telegrams
				- Runtime Error Program:
				<u>C:\Program</u> Files\Atlashydro\HydromapContr
				ol\AHControl.exe

	11:02	22:06	11.07	Cannot connect to database
20.06.	04:51	05:35	0.73	 W-026 Can't deliver ASD File Service PLF config:2 W-004 Timeout while waiting for fileserver response
	07:53	08:00	0.12	Parastore not reacting anymore
	10:42 11:40 (?)	12:15	1.55	Echogram Buffer full (Windows error)
	12:33	14:49	2.27	System crash; multiple SPM notifications PS3 reboot DIPS carried out; Status invalid
21.06.	14:27	<5min	0.08	Parastore crash without error message
	14:42	15:53	1.18	 Driver 'DS P70' is not sending telegrams (s.o.) Runtime error: Termination of: Atlashydro\HydroDBServer\AHServer.exe
	17:32	18:05	0.55	Can't deliver ASD file Service PHF config:2
	20:50	21:18	0.47	PARASOUND crash; PC restart necessary
	23:13	23:31	0.30	Warning: TbfCmd Receive State; Shut down computer repeated more than 6 times
22.06.	01:01	03:43	2.70	PC restart > Switch Power: "Status invalid"
	05:55			Windows crash - not working anymore
24.06.		17:34	59.65	Out of function until date and time given left
	20:11	22:04 (?)	1.88	Remote Operation Bremen
	06:42	07:16	0.57	 Windows error: Parastore discovered a problem and needs to close FTP error messages
	15:35	16:35	1.0	 Timeout while waiting for PHF data Parastore crash no signal; multiple CM recovery action: reconfiguration
	20:25	20:33	0.13	Parastore crash
28.06.	17:38	18:48	1.17	- Warning: SET TBF enable not possible - Data not sent properly to sounder! Try again. If it is not possible to sent the data at all, you have to restart the HYDROMAP SERVER and database process

				 Driver 'ATLAS PARASOUND DS P70' is not sending telegrams Switch Power: "Status invalid" after first restart
29.06.	13:43	13:54	0.18	Parastore crash
	20:15			Remote Operation Bremen
30.06.		00:25	4.17	
	14:39	16:17	1.63	 Windows error; Windows data loss during writing of ASD-Files; Timeout while waiting for file service Driver DS P70 is not sending telegrams TBF startup problem HVPM communication error
01.07.	10:25	10:42	0.28	Driver DS P70 is not sending telegramsMessage: data not sent properly to sounder
	10:47	10:54	0.12	Timeout while waiting for PHF dataDriver DS P70 is not sending telegramsSPM recovery
	16:35	16:42	0.12	Parastore closes without error message
	18:05	18:36	0.52	Parastore closes without error messageno signal after restarting Parastore
03.07.	13:43	18:12	4.48	Windows error
04.07.	14:00	14:08	0.13	Storage Problem
05.07.	21:44			- Windows error: data loss while writing
09.07.		04:00	89.0	 (Temp\SPL C7 could not be saved) after restart: Parastore: Timeout while waiting for file service response (Windows XP final crash, hard disc failure)
sum of tir	ne without da	ita	186	Due to system problems without stations
sum of sta	ation time		67	According to Table 5.9
sum of operation time		207	Data acquisition and storage	
Sum of anticipated operation time		393	Including operation time without stations	

Table 5.8:Summary of time windows when PARASOUNDdata acquisition was not possible
due to system failure and repair

Date 2009	From UTC	Until UTC	Gear
22.06.	05:57	08:07	06:00 CTD 08:00 Seismic deployed
25.06.	14:32	17:12	CTD;
26.06.	15:15	22:23	16:15 MSM12/2-01-01 (SL-10) 18:05 MSM12/2-01-02 (GKG) 20:15 MSM12/2-01-03 (SL-10)
27.06.	00:01	04:17	00:05 MSM12/2-02-01 (SL-10) 02:05 MSM12/2-02-02 (GKG)
29.06.	17:37	23:39	MSM12/2-03-01 (SL-10) MSM12/2-03-02 (GKG)
30.06.	00:16	05:18	CTD 01:55 MSM12/2-04-01 (SL-10) 03:25 MSM12/2-04-02 (GKG)
	05:43	10:37	MSM12/2-05-01 (SL-15) MSM12/2-05-02 (GKG) no recovery
02.07.	05:22	12:07	08:03 MSM12/2-06-01 (GKG) 09:27 MSM12/2-06-02 (SL-10; IODP U1307) MSM12/2-06-03 (GKG)
	14:51	19:10	16:30 MSM12/2-07-01 (GKG) 18:10 MSM12/2-07-02 (SL-10)
	22:23		MSM12/2-08-01 (GKG)
03.07.		03:52	MSM12/2-08-02 (SL-15)
06.07.	14:31	20:08	ca. 17:00 MSM12/2-09-01 (SL-15) MSM12/2-09-02 (GKG)
	20:48		MSM12/2-10-01 (GKG)
07.07.		00:05	MSM12/2-10-02 (SL-15)
	07:24	10:21	CTD 09:13 MSM12/2-11-01 (SL-10)
09.07.	07:32	10:49	08:02 MSM12/2-12-01 (SL-15) 09:20 MSM12/2-12-02 (GKG)
	12:13	14:11	CTD

Table 5.9:Summary of time windows when PARASOUNDdata acquisition was reduced (2
minutes wait time) or system on standby due to vessel on station

5.4.3 Data Acquisition and Management

During MS-12/2 digital data acquisition and storage were switched on in the Irminger Basin on June 19 at 16:19 UTC with full data acquisition from June 20 at 00:00 UTC and had to be switched off after a major system failure on July 5 at 21:38 UTC. Originally profiling was anticipated to continue until station MSM-12/-12 (reached on July 9 at about 04:00). PARASOUND was continuously operating during the period stated above unless acquisition was interrupted by system crashes (Tab. 5.5) or switched to standby or reduced data storage on stations (Tab. 5.6). Acquisition included PHF and SLF data whenever the system was running. Both PHF and SLF traces were visualized as online profiles on screen. SLF profiles (200m depth windows) and online status (in 60s or 120s intervals) were printed on A4 pages.

For the period defined above six different types of on-line data files were stored on hard disc:

- PHF data in ASD format
- SLF data in ASD format
- SLF data in PS3 format
- SLF data in SEG-Y format
- Navigation data and general PARASOUND settings (60s intervals) in ASCII format
- Auxiliary data about ATLAS PARASTORE 3 settings in ASCII format

Fig. 5.14: PARASOUND profile with locations of stations MSM-12/2-01 and 02. Horizontal scales are time UTC (upper) and kilometer (lower numbers and bars). Station MSM-12/2-01 and MSM-12/2-02 are at 08:49 and 06:40 UTC, respectively.

All ASD data files stored are automatically packed into "cabinet files" by Atlas software. The files are named according to date and time of recording (containing about five minutes of acquired data per file). Usually cabinet files contain profile data for 10 minutes of acquisition time. The data have been sorted by the operator into folders according to data type and recording dates (0 to 24 hours UTC), copied to one external hard disk via fast USB-board and backed up on a second hard disc. In total 15,659 files in 74 folders of data with a total volume of 117 GB were stored on external discs. These data will be transferred to the AWI data base for being available through PANGAEA (www.pangaea.de).

During the entire period of acquisition the system was operator controlled (watch keeping). Book keeping was carried out including basic PARASOUND system settings, some navigation information, various kinds of remarks as well as a low-resolution hand-drawn bathymetry plot.

Time windows with data of specific interest (geological situations at or near stations) were selected and replayed during the cruise using optimal settings of ATLAS PARASTORE-3 and SeNT (Hanno Keil, MARUM, University of Bremen).

Fig. 5.15: PARASOUND profile with location of station MSM-12/2-03. Horizontal scales are time UTC (upper) and kilometer (lower numbers and bars). Station MSM-12/2-03 is at 17:32 UTC.

In total 28 major problems or system crashes were observed during the cruise. These crashes were caused by failures of ATLAS HYDROMAP CONTROL, ATLAS HYDROMAP SERVER, ATLAS PARASTORE-3, CM and/or SPM (Tab. 5.5). However, the major concern was caused by the PC system software "Windows XP", which led to total

failure and partial destruction of the PC's system software three times during the cruise. In the first two cases the internet connection was used for a re-installation and repair of the operator PC remotely carried by ATLAS HYDROGRAPHIC, Bremen, Germany (Tab. 5.5). Prior to remote repairs "Windows XP" could be re-installed on the operator PC by the shipboard staff. On July 5 the third "Windows" crash could not be repaired because it was accompanied by hardware problems (hard disc drive). Almost simultaneously, the second Operator PC located on the bridge broke down due to a similar combination of problems. All crashes caused significant loss of data, which is summarized in Table 5.8. In total a period of 187 hours of data acquisition was lost, which is equivalent to 47 % of the total time, where profiling in the area under investigation was intended to be carried out (station time not included, Tab. 5.5).

5.4.4 Examples of recorded data along the cruise track near geological stations

In the area under investigation the sediments resolved in PARASOUND profiles are well stratified and show evidence of bottom current activity up to the surface. In most locations this is documented in variable thicknesses of sediment packages over relatively short lateral distances. For the coring stations mentioned below the reader is referred to Fig. 5.8.

For example, sediment thicknesses are higher at coring station MSM-12/2-01 (ODP 646) than on top of a topographic feature (MSM-12/2-02) where the units appear to be more condensed (Fig. 5.14). At coring station MSM-12/2-03 (IODP 1305), the upper 75 m of sediments are relatively constant in thickness over longer distances (Fig. 5.15).

Fig. 5.16: PARASOUND profile with locations of stations MSM-12/2-04 and 05. Horizontal scales are time UTC (upper) and kilometer (lower numbers and bars). Station MSM-12/2-04 and MSM-12/2-05 are at 11:13 and 11:59 UTC, respectively.

The opposite is visible at coring stations MSM-12/2-04 and MSM-12/2-05 (Fig. 5.16). Here, at station MSM-12/2-05, the uppermost sediments were sampled with the highest resolution observed in the entire area under investigation. In contrast, right next to station MSM-12/2-04, this unit lenses out while some underlying units appear to be thicker than at station MSM-12/2-05 only 9 km away. However, those units thicker also lens out but in the opposite direction so that they only occur in the area displayed in Figure 5.16 but nowhere else. The location is close to the sea mount ("MARIA S. MERIAN") discovered on air gun and multi-beam bathymetry tracks during the cruise. Station MSM-12/2-04 is only 0.5 km away from the feature, which is represented by a data gap in PARASOUND profiles (e.g. Fig. 5.16) due to its steep slope (>> 4°).

Fig. 5.17: PARASOUND profile with locations of stations MSM-12/2-06 and -08. Horizontal scales are time UTC (upper) and kilometer (lower numbers and bars). Station MSM-12/2-06 and MSM-12/2-08 are at 05:23 and 04:24 UTC, respectively

The more condensed character of the sediments at coring station MSM-12/2-05 (IODP 1307) is clearly documented in PARASOUND data compared to station MSM-12/2-08 some 15km away, where the thickness is higher by a factor of about 2 (Fig. 5.17). At coring station MSM-12/2-07 (IODP 1307) sedimentation rates appear to be higher than in the area 10km to the south of IODP site 1307 (Fig. 5.17). Some differences in sediment thickness are also observed between station MSM-12/2-09 and MSM-12/2-10, where a bathymetric depression and a bathymetric high were sampled over a relatively short lateral distance in the south-east corner of the area, respectively (Fig. 5.18).

Coring site MSM-12/2-11 is located in an area where sediments appear to be condensed (Fig. 5.19). In places at about 10 mbsf, erosion of well-stratified sub-bottom strata is visible in PARASOUND profiles. Core MSM-12/2-11 should have penetrated through this

unconformity (Fig. 5.19). The last core of the cruise MSM-12/2-12 is not documented in this report by PARASOUND data, because it was recovered after the final break down of the PARASOUND system. The location was selected from a sub-bottom profiling track of a previous "Polarstern" cruise (ARK-XXIII/2 in 2008).

5.4.5 List of Abbreviations

ASCII	American Standard Code for Information Interchange
ASD	Atlas Sounding Data
С	Water sound velocity
СМ	Control Module
mbsf	Meters below Sea Floor
PHF	Primary High Frequency
P-SBP	Parametric Sub-bottom Profiling
PS3	Export format of PARASOUND data
P70	Product version of PARASOUND with 70 kW pulse transmission power
RV	Research Vessel
SBES	Single-Beam Echo-Sounder

Fig. 5.18: PARASOUND profile with location of station MSM-12/2-07. Horizontal scales are time UTC (upper) and kilometer (lower numbers and bars). Station MSM-12/2-07 is at 14:45 (profiling stopped for station work).

- SEG-Y Society of Exploration Physicists-Standard Format for Seismic Data
- SHF Secondary High Frequency
- SLF Secondary Low Frequency
- SM-120 Multi-Beam System (Simrad Echosounder)

SPMSignal Processing ModuleUSBUniversal Serial Board

5.5 CTD System

(A. Müller-Michaelis)

5.5.1 Method

Water masses from different origin regions determine depth profiles in temperature and salinity. The changing hydrographic properties of the water masses in the investigation area result also in different sound velocity depth profiles. The PARASOUND and multi-beam systems use a fixed water sound velocity of 1500 m/s for profiling the sea bottom. To get better results during the MSM12/2 cruise and for the data processing the true sound velocity profiles of different CTD (<u>C</u>onductivity, <u>T</u>emperature, <u>D</u>epth) reference stations are used for the calibration of these acoustic systems. The CTD consists of conductivity, temperature, and pressure sensors. The depth is evaluated by the pressure and the salinity by the conductivity. The CTD is fixed on a frame with an altimeter and niskin bottles for water samples. It is lowered by winch down to approx. 10 m above sea bottom. The profiles are measured and recorded during the down- and the up-cast. For the multi-beam system just the up-casts were used and updated continually during the cruise. Due to problems with the PARASOUND system the fixed sound velocity of 1500 m/s was used during MSM12/2, but the recorded sound velocity profiles can be used for latter post-processing.

Fig. 5.18: PARASOUND profile with locations of stations MSM-12/2-09 and -10. Horizontal scales are time UTC (upper) and kilometer (lower numbers and bars). Station MSM-12/2-09 and MSM-12/2-10 are at 23:54 and 22:58:30 UTC, respectively.

8 CTD casts were completed on this cruise. The casts were initiated and terminated on deck. 2 water samples were taken per cast for calibration of the conductivity sensor. (The CTD was also used for 47 CTD stations on the MSM12/1 cruise, the salinity of the water samples will be measured by salinometer on the MSM12/3 cruise).

Fig. 5.19: PARASOUND profile with location of station MSM-12/2-11. Horizontal scales are time UTC (upper) and kilometre (lower numbers and bars). Station MSM-12/2-11 is at 06:53 UTC, respectively.

5.5.2 Equipment

12 bottle stainless steel frame configured in the following way:

Seabird 9/11 plus CTD Seabird 24 position carousel 12 x 5 L Ocean Test Equipment "niskin" bottles The configuration of IfM CTD-2 was: Seabird 9+ underwater unit Seabird 3 P temperature sensor s/n 1526 Seabird 4 Conductivity sensor s/n 1222 Digiquartz temperature compensated pressure sensor s/n 53573 Seabird 5T submersible pump

Seabird altimeter s/n 1119 Seabird 24 position carousel Seabird 11+ V2 deck unit

5.5.3 Preliminarily Results

List of the CTD stations:

Cast No.	Date	Start time	Latitude	Longitude
001	22.06.2009	06:06	58° 46.83' N	044° 17.41' W
002	25.06.2009	14:29	58° 12.62' N	048° 22.16' W
003	29.06.2009	17:37	57° 28.52' N	048° 31.81' W
004	02.07.2009	05:36	58° 30.34' N	046° 24.05' W
005	02.07.2009	14:48	58° 14.23' N	045° 38.54' W
006	06.07.2009	14:29	57° 34.16' N	044° 44.73' W
007	07.07.2009	07:19	58° 14.32' N	044° 24.87' W
008	09.07.2009	12:13	60° 17.25' N	039° 40.14' W

Table 5.10: CTD station coordinates.

Fig. 5.21: Sound velocity profiles of the 8 CTD stations MSM 12/2.

5.6 ADCP

(A. Müller-Michaelis)

5.6.1 Method

The vessel mounted Acoustic Doppler Current Profiler (ADCP) measures the current velocity beneath the ship using the Doppler effect. Four beams of low-frequency acoustic signals are sent into the water column and the echo from suspended scatterers like plankton, faecal pellets etc. are evaluated to receive the velocity along the beam direction as the frequency of (sound) waves is changed by relative motion. The first pair of beams calculates east-west and vertical velocity, the second pair of beams the north-south and also the vertical velocity. The difference between two vertical velocities gives the error velocity. To get the true current velocities beneath the ship, the measured values have to be corrected for the pitch and roll movement of the ship, rotated from the ADCP coordinates to earth coordinates and the ships velocity and the tidal currents have to be subtracted.

5.6.2 Equipment

The ship's ADCP, which has been manufactured by RD Instruments (Poway, Ca., USA), has a working frequency of 75 kHz, ping rate of 0.7 Hz, and is specified for a maximal ship speed of 22 kn. Despite the fact that this instrument is specified for a maximal bottom track depth of 950 m, the operational maximal bottom search depth was set to 500 m. A constant salinity of 35 was utilized to calculate the velocities.

5.6.3 Preliminarily results

The Acoustic Doppler Current Profiler (ADCP) had been running almost constantly during the cruise without any problems.

The measurements were stopped and restarted every 4 to 5 days to keep the file sizes easily processable and to avoid data loss in cases of problems. The Ship's DoLog interferes with the ADCP. It was activated two times during MSM 12/2, June, 19th from 13:30h to 14:00h and on July, 2nd from 02:00h to 03:00h.

File No.	Start date	Start time	End date	End time	Comments
001	18.06.2009	13:20	18.06.2009	13:20	Test
002	18.06.2009	13:20	21.06.2009	10:17	DoLog activated:
					19.06.2009 13:30-14:00
003	21.06.2009	10:17	25.06.2009	19:11	-
004	25.06.2009	19:11	29.06.2009	19:15	-
005	29.06.2009	19:15	06.07.2009	16:01	DoLog activated:
					02.07.2009 02:00-03:00
006	06.07.2009	16:01	09.07.2009	13:25	-
007	09.07.2009	13:25			

List of data files:

Table 5.11: Details of ADCP recording.

Fig. 5.22: Zonal and meridional velocity time series during MSM 12/2

Fig. 5.22: Continued.

6. References

- Aksu, A.E., de Vernal, A., Mudie, P.E., 1989. High-resolution foraminifer, palynologic, and stable isotopic records of upper Pleistocene sediments from the Labrador Sea: Paleoclimatic and paleoceanographic trends. In: S.P. Srivastava, M.A. Arthur and et al. (Editors), Proceedings ODP Scientific Results. Ocean Drilling Program, College Station, Tx pp. 617-652.
- Aksu, A.E., Hillaire-Marcel, C., 1989. UPPER MIOCENE TO HOLOCENE OXYGEN AND CARBON ISOTOPIC STRATIGRAPHY OF SITES 646 AND 647, LABRADOR SEA. In: S.P. Srivastava, M. Arthur, B. Clement and et al. (Editors), Scientific Results. Ocean Drilling Program, College Station, pp. 689-704.
- Arthur, M.A., Srivastava, S.P., Kaminski, M., Jarrard, R.D., Osier, J., 1989. SEISMIC STRATIGRAPHY AND HISTORY OF DEEP CIRCULATION AND SEDIMENT DRIFT DEVELOPMENT IN BAFFIN BAY AND THE LABRADOR SEA. In: S.P. Srivastava, M. Arthur, B. Clement and et al. (Editors), Scientific Results. Ocean Drilling Program, College Station, pp. 957-988.
- ATLAS_Hydrographic, 2007a. ATLAS HYDROMAP CONTROL Operator Manual. ED-1060-G-312_V5-0. Edition: 04.2007., Bremen.
- ATLAS_Hydrographic, 2007b. ATLAS PARASTORE-3 Operator Manual. ED 6006 G 212:/ Version: 4.0 / Edition: 05/2007, Bremen.
- Best, A.I., Gunn, D.E., 1999. Calibration of marine sediment core loggers for quantitative acoustic impedance studies. Marine Geology, 160, 137-146.
- Bianchi, G., McCave, I.N., 1999. Holocene periodicity in North Atlantic climate and deepocean flow south of Iceland. Nature, 397, 515-517.
- Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W. et al., 2001. Persistant solar influence on North Atlantic climate during the Holocene. Science, 294, 2130-2136.
- Chalmers, J.A., Pulvertaft, T.C.R., 2001. Development of the continental margins of the Labrador Sea a review. In: R.C.L. Wilson and et al._(eds.) (Editors), Non-volcanic rifting of the continental margins: a comparison of evidence from land and sea. Special Publication. Geological Society of London, pp. 77-105.
- Channell, J.E.T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C.A., Malone, M.J. et al., 2006. Proceedings of the Intergrated Ocean Drilling Program. Vol 303/306 Expeditions Report, North Atlantic Climate.
- Chian, D., Louden, K., 1992. The structure of Archean-Ketilidian crust along the continental shelf of southwestern Greenland from a seismic refraction profile. Canadian Journal of Earth Sciences, 29, 301-313.
- Expedition 303 Scientists, 2006a. Expedition 303 summary. In: J.E.T. Channell et al. (Editors), Proc. IODP. Integrated Ocean Drilling Program Management International, College Station, pp. 30.
- Expedition 303 Scientists, 2006b. Site U1305. In: J.E.T. Channell et al. (Editors), Proc. IODP. Integrated Ocean Drilling Program Management International, College Station, pp. 93.

- Expedition 303 Scientists, 2006c. Site U1306. In: J.E.T. Channell et al. (Editors), Proc. IODP. Integrated Ocean Drilling Program Management International, College Station, pp. 92.
- Expedition 303 Scientists, 2006d. Site U1307. In: J.E.T. Channell et al. (Editors), Proc. IODP. Integrated Ocean Drilling Program Management International, College Station, pp. 66.
- Gohl, K., Smithson, S.B., 1993. Structure of Archean crust and passive margin of southwest Greenland from seismic wide-angle data. Journal of Geophysical Research, B98, 6623-6638.
- Gohl, K., Smithson, S.B., Kristoffersen, Y., 1991. The structure of the Archean crust in SW Greenland from seismic wide-angle data: A preliminary analysis. In: R. Meissner et al. (Editors), Continental Lithosphere: Deep Seismic Reflections. Geodynamics Series. American Geophysical Union, Washington, D.C., pp. 53-57.
- Hall, F.R., Bloemendal, J., King, J.W., Arthur, M.A., Aksu, A.E., 1989. MIDDLE TO LATE QUATERNARY SEDIMENT FLUXES IN THE LABRADOR SEA, ODP LEG 105, SITE 646:A SYNTHESIS OF ROCK-MAGNETIC, OXYGEN-ISOTOPIC, CARBONATE, AND PLANKTONIC FORAMINIFERAL DATA. In: S.P. Srivastava, M. Arthur, B. Clement and et al. (Editors), Scientific Results. Ocean Drilling Program, College Station, pp. 653-688.
- Klages, M., Thiede, J., in prep. The expeditions ARKTIS-XXII/1a-c of the research vessel "Polarstern" in 2007.
- Schiel, S., 2009. The expedition of the research vessel "Polarstern" to the Antarctic in 2007 (ANT-XXIV/1).
- Shipboard Scientific Party, 1987. Site 646. In: S.P. Srivastava, M. Arthur, B. Clement and et al. (Editors), Init. Repts. Ocean Drilling Program, College Station, pp. 419-674.
- Shipboard Scientific Party, 2005. Ice sheet-ocean atmosphere interactions on millenial timescales during the late Neogene-Quaternary using a paleointensity-assisted chronology for the North Atlantic. IODP Expedition 303 preliminary report.
- Srivastava, S.P., Arthur, M.A., 1989. TECTONIC EVOLUTION OF THE LABRADOR SEA AND BAFFIN BAY: CONSTRAINTS IMPOSED BY REGIONAL GEOPHYSICS AND DRILLING RESULTS FROM LEG 105. In: S.P. Srivastava, M. Arthur, B. Clement and et al. (Editors), Scientific Results. Ocean Drilling Program, College Station, pp. 989-1009.
- Srivastava, S.P., Arthur, M.A., Clement, B., et al_(eds.), 1987. Proceedings Initial Reports (Pt. A), 105. ODP, College Station, TX (Ocean Drilling Program).
- Srivastava, S.P., Arthur, M.A., Clement, B., et al_(eds.), 1989. Proceedings ODP, Scientific Results. ODP, College Station, TX (Ocean Drilling Program).
- Stein, R., 1991. Accumulation of organic carbon in marine sediments. Lecture Notes in Earth Science. Springer Verlag, Heidelberg, 217 pp.
- Stein, R., Stax, R., 1991. Late Quaternary organic carbon cycles and paleoproductivity in the northern Labrador Sea (ODP-Site 646). Geo-Marine Letters, 11, 90-95.

- Stoner, J.S., Channell, J.E.T., Hillaire-Marcel, C., 1995. Late Pleistocene relative geomagnetic paleointensity from the deep Labrador Sea: regional and global correlations. Earth and Planeatry Science Letters, 134, 237–252.
- Stoner, J.S., Channell, J.E.T., Hillaire-Marcel, C., 1996. The magnetic signature of rapidly deposited detrital layers from the deep Labrador Sea: relationship to North Atlantic Heinrich layers. Paleoceanography, 11, 309-325.
- Turon, J.-L., Hillaire-Marcel, C., Shipboard_Participants, 1999. IMAGES V mission of the Marion Dufresne, Leg 2, 30 June to 24 July 1999. Open File 3782, Geol. Surv. Canada.
- White, R., McKenzie, D., 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94, 7685-7729.

7. Acknowledgements

We like to thank Captain Friedrich von Staa, his officers and crew of RV MARIA S. MERIAN for their support of our measurement programme and for creating a very friendly atmosphere on board.

The ship time of FS MARIA S. MERIAN was provided by the Deutsche Forschungsgemeinschaft within the core program METEOR/MERIAN. We also benefited from financial contributions by the research institutes involved. We gratefully acknowledge all this support.

Appendix 1 Teilnehmende Institute/ Participating Institutions

AWI	Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft Am Alten Hafen 26, D-27568 Bremerhaven, Germany (www.awi.de)
EEL	Exploration Electronics Ltd/ Airbridge Compressors Yarmouth Business Park, Suffolk Rd, Great Yarmouth, Norfolk NR31 0ER, UK (www.exploration-electronics.co.uk)
GEUS	Geological Survey of Denmark and Greenland Øster Voldgade, Dk-1360 Copenhagen K, Denmark (www.geus.dk)
IfM-ZMAW	Institut für Meereskunde, Zentrum für Marine und Atmosphärische Wissenschaften, University Hamburg Bundesstr. 53, D-20146 Hamburg, Germnay (www.ifm.uni-hamburg.de)
Optimare	OPTIMARE Sensorsysteme AG Am Loners 15a, D-27572 Bremerhaven, Germany (www.optimare.de)
Scansurvey	Scansurvey ApS Baldershoej 26a, DK-2635 Ishøj, Denmark (www.scansurvey.dk)
Uni Aarhus	University of Aarhus Department of Earth Sciences Hoegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark (www.geo.au.dk)
Uni Bristol	University of Bristol Department of Earth Sciences Wills Memorial Building, Queens Rd, Bristol BS8 1RJ, UK (www.gly.bris.ac.uk)

Appendix 2 Fahrtteilnehmer / Cruise Participants

UENZELMANN-NEBEN, Gabriele	Chief Scientist	AWI
BAASCH, Benjamin	student, Seismics	AWI
EGGERS, Thorsten	Seismics	Optimare
FISCHEL, Andrea	student, PARASOUND	Uni Aarhus/GEUS
FREIBOTHE, Ronald	student, Seismics	AWI
HØJDAL, Jesper	Simrad	Scansurvey
KORDANSKA, Matylda	student, Seismics	AWI
LISS, Barbara	student, Seismics	AWI
MÜLLER-MICHAELIS, Antje	CTD	IfM-ZMAW
NAAFS, Bernhard David	Geology	AWI
NIELD, Mark	compressor technician	EEL
NIESSEN, Frank	PARASOUND, core logging	AWI
OBERMANN, Anne	student, Seismics	AWI
PETERS, Carl	student, Geology	AWI
SAUKEL, Cornelia	Geology	AWI
SCHMIDT, Daniela	Geology	Uni Bristol
SLABY, Beate	student, PARASOUND	AWI
SOMMERFELD, Robert	student, Geology	AWI
STEIN, Rüdiger	Geology	AWI
WEIGELT, Estella	Seismics	AWI
MÜLLER, Reinhard	doctor	Briese

Appendix 3 Besatzung / Ship's Crew

VON STAA, Friedhelm	Master
GUENTHER, Matthias	Chief Officer
BEHNISCH, Holm	1st Officer
MAASS, Björn	2nd Officer
OGRODNIK, Thomas	Chief Engineer
BOY, Manfred	2nd Engineer
RAABE, Rejko	3rd Engineer
STASUN, Oliver	Electrician
WIECHERT, Olaf	Fitter
TOMIAK, Martin	Electronics
MAGGIULLI, Michael	SysOps
KREFT, Norbert	Bosun
ROOB, Christian	SM
VREDENBORG, Enno	SM
ETZDORF, Detlef	SM
PAPKE, Rene	SM
BARON, Heiko	SM
THODE, Marc	SM
BADTKE, Rainer	SM
LORENZEN, Olaf	Motorman
ARNDT, Waldemar	Cook
KROEGER, Sven	2nd Cook
SEIDEL, Iris	Stewardess

Appendix 4 Stationsliste / Station List

Station	Date	Time	Position	Position	Depth	Gear	Action	Comment
No. MSM12/639-		[UTC]	Lat	Lon	[m]	Multibeam und		
1 MSM12/640-	6/21/2009	16:00	59° 10,53' N	42° 9,70' W	2192.4	PARASOUND CTD/rosette water	start profil	
1	6/22/2009	6:08	58° 46,83' N	44° 17,40' W	1825.6	sampler	surface	
MSM12/640- 1	6/22/2009	6:44	58° 46,83' N	44° 17,40' W	1826.3	CTD/rosette water sampler	at depth	SL max 1796 m
								Techn. Defekt des
MSM12/639-	6/22/2009	6.20	58° 46 83' N	44° 17 40' W	1827.6	Multibeam und PARASOUND	Information	Profile weiter
MSM12/640-	6/22/2000	7.26	500 46 02! N	44° 17 40' W	1926.7	CTD/rosette water	on dools	
MSM12/640-	6/22/2009	0.15	500 46,05 N	44 17,40 W	1020.7		Streamer into	
MSM12/640-	6/22/2009	8:15	58° 46,76° N	44-17,82 W	1830.0		water	3175m Streamer
2 MSM12/640-	6/22/2009	9:25	58° 45,86' N	44° 22,52' W	1858.9	Seismic reflection profile	Remark airguns in the	ausgebracht
2 MSM12/640-	6/22/2009	9:37	58° 45,72' N	44° 23,31' W	1865	Seismic reflection profile	water	Profil AWI
2	6/22/2009	10:13	58° 45,00' N	44° 27,19' W	1894.3	Seismic reflection profile	profile start	20090001
MSM12/640-								wg. Kompressor-
2 MSM12/640-	6/22/2009	10:27	58° 44,68' N	44° 28,91' W	1908.4	Seismic reflection profile	Remark	Problemen techn Probleme
2	6/22/2009	10:47	58° 44,25' N	44° 31,27' W	1922.7	Seismic reflection profile	Remark	behoben
MSM12/640-								wg. Kompressor-
2	6/22/2009	10:54	58° 44,10' N	44° 32,09' W	1928.8	Seismic reflection profile	Remark	Problemen Beginn Hieven
								Streamer zur
								(Lauftiefe nicht
MSM12/640- 2	6/22/2009	12:25	58° 42,09' N	44° 42,84' W	1956	Seismic reflection profile	Remark	korrekt und zu hoher Zug)
								Streamerzug zu
								leckge-
MSM12/640-							streamer on	schlagen & gesunken. Ändern
2 MSM12/640	6/22/2009	13:45	58° 41,02' N	44° 49,16' W	1979.9	Seismic reflection profile	deck Straamar into	auf gr. Blase
2	6/22/2009	14:27	58° 40,73' N	44° 50,87' W	1983.3	Seismic reflection profile	water	
MSM12/640-								Streamer mit 3175m
2 MSM12/640	6/22/2009	15:40	58° 38,98' N	44° 59,46' W	2009	Seismic reflection profile	Remark	ausgesteckt
2	6/22/2009	15:47	58° 38,81' N	45° 0,36' W	2017.1	Seismic reflection profile	Remark	Fortsetzung Profil
MSM12/640- 2	6/22/2009	16:07	58° 38,27' N	45° 3,28' W	2057.5	Seismic reflection profile	Remark	Alle 4 Airguns in Betrieb
MSM12/640- 2	6/22/2009	18.52	58° 33 62' N	45° 28 12' W	2352.4	Seismic reflection profile	alter course	Neuer Kurs 261°rw
MSM12/640-	6/22/2000	22.27	58° 20 62' N	46° 2 01' W	2480.3	Soismie reflection profile	alter course	Nouar Kurs 267°
MSM12/640-	0/22/2009	22.21	58 50,05 N	40 2,01 W	2400.3	Seisine reneetion prome	anci course	Neder Kurs 207
2 MSM12/640-	6/23/2009	12:25	58° 28,16' N	48° 14,40' W	3463.8	Seismic reflection profile	alter course	Neuer Kurs 109° Auf neuem Kurs
2 MSM12/640	6/23/2009	13:27	58° 25,22' N	48° 10,41' W	3447.5	Seismic reflection profile	Remark	109°
2	6/24/2009	10:12	57° 50,26' N	45° 5,29' W	2702.3	Seismic reflection profile	alter course	Neuer Kurs 281°
MSM12/640- 2	6/24/2009	12:08	57° 51,57' N	45° 7,52' W	2652.8	Seismic reflection profile	Remark	Auf neuem Kurs 281°
								Techn. Defekte
MSM12/639-	(124/2000)	21.26	500 1 10133	4(0.2(.2(1)))	20/2 1	Multibeam und	Infer di	Fortsetzung Profil
I MSM12/640-	6/24/2009	21:36	38° 1,19' N	46° 30,36' W	3062.1	PAKASUUND	information	mit PS
2 MSM12/640-	6/25/2009	8:51	58° 12,61' N	48° 22,26' W	3447.2	Seismic reflection profile	alter course	Neuer Kurs 283° Auf neuem Kurs
2 MSM12/640	6/25/2009	8:52	58° 12,63' N	48° 22,42' W	3450.6	Seismic reflection profile	Remark	283°
2	6/25/2009	10:49	58° 14,85' N	48° 40,72' W	3475.6	Seismic reflection profile	end of profile	ļ
MSM12/640- 2	6/25/2009	11:20	58° 15,33' N	48° 43,54' W	13.4	Seismic reflection profile	array on deck	
MSM12/640- 2	6/25/2000	12.22	58° 17 50' N	48° 48 81' W	3485 5	Seismic reflection profile	streamer on deck	
MSM12/639-	(125/2000)	14.10	500 12 12121	400.25.04130	2470 4	Multibeam und	acon 1	
1	0/23/2009	14:12	30 13,13 N	40 23,00 W	34/9.0	rakasuund	prome break	1

MSM12/641-	6/25/2009	14.32	58° 12 62' N	48° 22 17' W	3447.2	CTD/rosette water	surface	
MSM12/641-	6/25/2009	15.37	58° 12,62 N	48° 22 14' W	3//7 8	CTD/rosette water	at depth	Sl max. 3438m,
MSM12/641-	6/25/2009	16.47	500 12,50 N	40° 22,14 W	2449	CTD/rosette water	ar deals	meven
MSM12/639-	6/25/2009	16:47	58° 12,56° N	48° 22,15° W	3448	Multibeam und	continue the	
l MSM12/639-	6/25/2009	16:47	58° 12,56' N	48° 22,15' W	3448	PARASOUND Multibeam und	profile	
1 MSM12/642-	6/26/2009	16:39	58° 12,57' N	48° 22,16' W	3450.6	PARASOUND	profile break	
1 MSM12/642-	6/26/2009	16:39	58° 12,57' N	48° 22,16' W	3450.6	Gravity corer	surface	10 m Kernrohr
1 MSM12/642-	6/26/2009	17:22	58° 12,57' N	48° 22,16' W	3449.2	Gravity corer	at sea bottom off ground	SL max 3473 m
1 MSM12/642-	6/26/2009	17:26	58° 12,56' N	48° 22,16' W	3449.6	Gravity corer	hoisting	
1 MSM12/642	6/26/2009	18:16	58° 12,57' N	48° 22,16' W	3450.1	Gravity corer	on deck	
2 MSM12/642	6/26/2009	18:25	58° 12,57' N	48° 22,16' W	3449.8	Box corer	surface	
2	6/26/2009	19:08	58° 12,57' N	48° 22,16' W	3454.2	Box corer	at sea bottom	SL max. 3467m
MSM12/642- 2	6/26/2009	19:57	58° 12,57' N	48° 22,16' W	3449.1	Box corer	on deck	
MSM12/642- 3	6/26/2009	20:12	58° 12,57' N	48° 22,16' W	3450.2	Gravity corer	surface	10 m Kernrohr
MSM12/642- 3	6/26/2009	20:53	58° 12,57' N	48° 22,16' W	3447.9	Gravity corer	at sea bottom	SL max 3473m
MSM12/642- 3	6/26/2009	20:59	58° 12,57' N	48° 22,16' W	3450.1	Gravity corer	off ground hoisting	
MSM12/642- 3	6/26/2009	21:48	58° 12,57' N	48° 22,17' W	3450.9	Gravity corer	on deck	
MSM12/639-	6/26/2009	21.48	58° 12 57' N	48° 22 17' W	3450.9	Multibeam und PARASOUND	continue the	
MSM12/639-	6/27/2000	0.20	50° 12,57 H	479 52 421 W	2206.6	Multibeam und BARASOUND	mofile breels	
MSM12/643-	6/2//2009	0:20	58° 9,48' N	4/* 52,45* W	3300.0	PARASOUND	profile break	
I MSM12/643-	6/27/2009	0:20	58° 9,48' N	47° 52,43' W	3306.6	Gravity corer	surface	Sl max. 3325m,
1 MSM12/643-	6/27/2009	1:14	58° 9,49' N	47° 52,44' W	3305.5	Gravity corer	at sea bottom	Fz max. 62,8kN
1 MSM12/643-	6/27/2009	2:14	58° 9,48' N	47° 52,44' W	3305.7	Gravity corer	on deck	
2 MSM12/643-	6/27/2009	2:25	58° 9,48' N	47° 52,44' W	3304.8	Box corer	surface	Sl max. 3329m,
2 MSM12/643-	6/27/2009	3:17	58° 9,48' N	47° 52,44' W	3306.4	Box corer	at sea bottom	Fz max. 42,7kN
2 MSM12/620	6/27/2009	4:14	58° 9,48' N	47° 52,44' W	3305	Box corer	on deck	
1 1	6/27/2009	5:43	58° 10,32' N	48° 18,76' W	3429.2	PARASOUND	profile	
MSM12/644- 1	6/27/2009	5:43	58° 10,32' N	48° 18,76' W	3429.2	Seismic reflection profile	Streamer into water	
MSM12/644- 1	6/27/2009	7:09	58° 8,61' N	48° 12,27' W	3408.3	Seismic reflection profile	airguns in the water	
MSM12/644- 1	6/27/2009	7:14	58° 8,62' N	48° 11,91' W	3404.5	Seismic reflection profile	profile start	
MSM12/644- 1	6/27/2009	23:17	58° 14,22' N	45° 38,96' W	2272.2	Seismic reflection profile	alter course	Neuer Kurs 91°
MSM12/644-								Drehen auf neues Profil, neuer Kurs
1 MSM12/644-	6/28/2009	6:30	58° 13,96' N	44° 28,42' W	2348.9	Seismic reflection profile	end of profile	254°rw Profil AWI
1	6/28/2009	8:13	58° 11,94' N	44° 32,06' W	2371.1	Seismic reflection profile	profile start	20090006
MSM12/644-	6/29/2000	0.08	57° 48 85' N	46° 59 50' W	3114	Seismic reflection profile	Remark	Problemen mit
MSM12/644-	6/29/2009	1.00	57 40,05 N	40 59,50 W	2107.7		D 1	Kompressor
MSM12/644-	6/29/2009	1:08	5/° 4/,83' N	4/° 5,9/' W	3127.7	Seismic reflection profile	Remark	repariert
l MSM12/644-	6/29/2009	13:35	57° 29,31' N	48° 57,44' W	3503.7	Seismic reflection profile	end of profile	
1 MSM12/644-	6/29/2009	13:53	57° 28,41' N	48° 56,53' W	3502.9	Seismic reflection profile	array on deck streamer on	
1 MSM12/639-	6/29/2009	15:20	57° 26,10' N	48° 53,70' W	3508.1	Seismic reflection profile Multibeam und	deck	
1 MSM12/645-	6/29/2009	17:39	57° 28,52' N	48° 31,82' W	3466.4	PARASOUND CTD/rosette water	profile break	
1 MSM12/645	6/29/2009	17:39	57° 28,52' N	48° 31,82' W	3466.4	sampler CTD/rosette water	surface	
1 1 MSM12/645	6/29/2009	18:43	57° 28,52' N	48° 31,81' W	3465.7	sampler	at depth	SL max 3453 m
MSM12/645- 1	6/29/2009	19:56	57° 28,52' N	48° 31,81' W	3463.1	CID/rosette water sampler	on deck	
MSM12/645- 2	6/29/2009	20:14	57° 28,52' N	48° 31,81' W	3463.1	Gravity corer	surface	10 m Kernrohr

MSM12/645-		1				1		
2 MSM12/645	6/29/2009	20:58	57° 28,52' N	48° 31,82' W	3465.1	Gravity corer	at sea bottom	SL max. 3481m
2	6/29/2009	20:59	57° 28,52' N	48° 31,82' W	3465.8	Gravity corer	hoisting	
MSM12/645- 2	6/29/2009	21:50	57° 28,52' N	48° 31,82' W	3463.7	Gravity corer	on deck	
MSM12/645- 3	6/29/2009	21:57	57° 28,52' N	48° 31,82' W	3464.1	Box corer	surface	
MSM12/645- 3	6/29/2009	22:03	57° 28,52' N	48° 31,82' W	3464.4	Box corer	information	Abbruch, SL max. 165m
MSM12/645- 3	6/29/2009	22:06	57° 28,52' N	48° 31,82' W	3466.2	Box corer	information	Oberfläche, erneut fieren
MSM12/645- 3	6/29/2009	22.47	57° 28 52' N	48° 31 81' W	3464 5	Box corer	at sea bottom	SL max 3477m
MSM12/645-	6/29/2009	22:17	57° 28 52' N	48° 31 82' W	3464.6	Box corer	on deck	
MSM12/639-	6/20/2000	23.33	57° 28,52' N	40° 21 92' W	3464.6	Multibeam und	continue the	
MSM12/639-	(/20/2000	1.50	579 22 451 N	400 27 021 W	2401.4	Multibeam und		
MSM12/646-	6/30/2009	1:50	5/° 33,45' N	48° 37,03° W	3491.4	PARASOUND	profile break	
l MSM12/646-	6/30/2009	1:50	57° 33,45' N	48° 37,03' W	3491.4	Gravity corer	surface	Sl max. 3510m,
1 MSM12/646-	6/30/2009	2:38	57° 33,45' N	48° 37,02' W	3490.5	Gravity corer	at sea bottom	Fz max. 63,9kN
1 MSM12/646-	6/30/2009	3:33	57° 33,45' N	48° 37,03' W	3491.9	Gravity corer	on deck	
2 MSM12/646-	6/30/2009	3:42	57° 33,45' N	48° 37,02' W	3491.9	Box corer	surface	
2 MSM12/646	6/30/2009	4:24	57° 33,45' N	48° 37,03' W	3491.9	Box corer	at sea bottom	SL max 3510 m
2 MSN(12/640-	6/30/2009	5:10	57° 33,45' N	48° 37,02' W	3491.4	Box corer	on deck	
1	6/30/2009	5:10	57° 33,45' N	48° 37,02' W	3491.4	PARASOUND	profile	
MSM12/639- 1	6/30/2009	5:52	57° 32,31' N	48° 44,32' W	3490.9	Multibeam und PARASOUND	profile break	
MSM12/647- 1	6/30/2009	5:52	57° 32,31' N	48° 44,32' W	3490.9	Gravity corer	surface	10 m Kernrohr
MSM12/647- 1	6/30/2009	6:34	57° 32,31' N	48° 44,32' W	3492.1	Gravity corer	at sea bottom	SL max 3504 m
MSM12/647- 1	6/30/2009	6:34	57° 32.31' N	48° 44.32' W	3492.1	Gravity corer	off ground hoisting	
MSM12/647-	6/30/2009	7.28	57° 32 31' N	48° 44 32' W	3491 5	Gravity corer	on deck	
MSM12/647-	6/30/2009	7.32	57° 32 31' N	48° 44 32' W	3487.6	Box corer	surface	
MSM12/647-	6/20/2000	9.14	57° 22 211 N	40° 44 22' W	2400	Box corer	at and hottom	SI may 2407m
MSM12/647-	(/20/2009	0.14	579 22 211 N	400 44 221 W	2400	Box color		BC hat nicht
2 MSM12/647-	6/30/2009	8:58	57° 32,31' N	48° 44,32' W	3490	Box corer	on deck	ausgelöst
3 MSM12/647-	6/30/2009	9:03	57° 32,31' N	48° 44,32' W	3491.1	Box corer	surface	
3 MSM12/647-	6/30/2009	9:45	57° 32,31' N	48° 44,32' W	3490.6	Box corer	at sea bottom	SL max. 3501m
3 MSM12/639-	6/30/2009	10:29	57° 32,31' N	48° 44,32' W	3490	Box corer Multibeam und	on deck continue the	
1 MSM12/648-	6/30/2009	10:29	57° 32,31' N	48° 44,32' W	3490	PARASOUND	profile Streamer into	
1	6/30/2009	11:49	57° 43,87' N	48° 31,27' W	3444.9	Seismic reflection profile	water	Streamer
MSM12/648-	6/30/2009	13:05	57° 39 17' N	48° 34 69' W	3481.9	Seismic reflection profile	Remark	ausgesteckt,
MSM12/648-	6/30/2000	12:10	57° 28 87' N	48° 24 00' W	2402.2	Seismie reflection profile	airguns in the	STYON
MSM12/648-	6/30/2009	12.40	57 36,87 N	40 34,90 W	2492.3		water	Auf neuen Kurs
I MSM12/648-	6/30/2009	13:40	57° 36,73' N	48° 36,47' W	3492.9	Seismic reflection profile	alter course	225°
1 MSM12/648-	6/30/2009	13:49	57° 36,14' N	48° 37,31' W	3491.4	Seismic reflection profile	profile start	
1	6/30/2009	16:26	57° 26,76' N	48° 54,72' W	3506.1	Seismic reflection profile	end of profile	Beginn
MSM12/648- 1	6/30/2009	16:48	57° 25,46' N	48° 57,03' W	3534.5	Seismic reflection profile	alter course	Wendemanöver auf 090°rw
MSM12/648- 1	6/30/2009	18:39	57° 28.44' N	48° 55.97' W	3497 7	Seismic reflection profile	profile start	Profil AWI 20090008
MSM12/648	0.00,2009					in the second prome	promo ondet	Am Wegpunkt
1 1 MSM12/C49	6/30/2009	21:13	57° 28,51' N	48° 31,82' W	3466.6	Seismic reflection profile	alter course	Kurs 089°
1/15/11/2/648-	7/1/2009	12:06	57° 30,18' N	46° 12,42' W	3156.5	Seismic reflection profile	end of profile	
MSM12/648-	7/1/2009	12:25	57° 30 20' N	46° 9 51' W	3175.4	Seismic reflection profile	alter course	Wendmanöver auf rw 354°
			U, UU, UU II				, more course	

MSM12/648-	7/1/2009	13.26	57° 32 16' N	46° 12 86' W	3107.1	Seismic reflection profile	profile start	Profil AWI- 20090009
MSM12/648-	7/2/2009	1.19	58° 30 22' N	46° 24 00' W	2580.8	Seismic reflection profile	alter course	WP IODP_1307 - KÄ auf rw 358°
1	11212009	1.17	56 50,22 1	40 24,00 W	2580.8	Seisine reneedon prome		Abbruch Profil,
								Auftriebskörper
MSM12/648- 1	7/2/2009	1:37	58° 31,67' N	46° 24,13' W	2566.1	Seismic reflection profile	Remark	der Airguns verloren
MSM12/648- 1	7/2/2009	2:25	58° 34,90' N	46° 24,36' W	2552.6	Seismic reflection profile	array on deck	
MSM12/648- 1	7/2/2009	3:43	58° 39,09' N	46° 26,90' W	2553.2	Seismic reflection profile	streamer on deck	
MSM12/639-	7/2/2009	5.38	58° 30 34' N	46° 24 05' W	2579.8	Multibeam und PARASOLIND	profile break	
MSM12/649-	7/2/2000	5.29	58° 20 24' N	46° 24 05' W	2570.8	CTD/rosette water	gurfage	
MSM12/649-	7/2/2009	5.56	500 20 24 11	40 24,05 W	2579.0	CTD/rosette water	surface	ar ar (a
MSM12/649-	//2/2009	6:26	58° 30,34' N	46° 24,05' W	2580.1	CTD/rosette water	at depth	SL max 2569 m
1 MSM12/649-	7/2/2009	7:19	58° 30,34' N	46° 24,05' W	2578.3	sampler	on deck	
2 MSM12/649-	7/2/2009	8:04	58° 30,34' N	46° 24,05' W	2580	Box corer	surface	
2 MSM12/649-	7/2/2009	8:37	58° 30,34' N	46° 24,05' W	2577.5	Box corer	at sea bottom	SL max. 2638m
2 MSM12/640	7/2/2009	9:17	58° 30,34' N	46° 24,05' W	2581.1	Box corer	on deck	
3	7/2/2009	9:26	58° 30,34' N	46° 24,05' W	2578.3	Gravity corer	surface	10 m Kernrohr
MSM12/649- 3	7/2/2009	10:00	58° 30,34' N	46° 24,05' W	2579.9	Gravity corer	at sea bottom	SL max. 2591m
MSM12/649- 3	7/2/2009	10:00	58° 30,34' N	46° 24,05' W	2579.9	Gravity corer	off ground hoisting	
MSM12/649- 3	7/2/2009	10:42	58° 30,34' N	46° 24,05' W	2579.4	Gravity corer	on deck	
MSM12/649- 4	7/2/2009	10.52	58° 30 34' N	46° 24 05' W	2579.6	Box corer	surface	
MSM12/649-	7/2/2000	11:24	58° 20 24' N	46° 24 05' W	2570.3	Box corer	at sas bottom	SI may 2505m
4 MSM12/649-	7/2/2009	12.02	500 20 24 N	40 24,05 W	2579.5	Box corer		SL max. 2595m
4 MSM12/639-	//2/2009	12:03	58° 30,34' N	46° 24,05' W	2577.9	Multibeam und	continue the	
1 MSM12/639-	7/2/2009	12:03	58° 30,34' N	46° 24,05' W	2577.9	PARASOUND Multibeam und	profile	
1 MSM12/650-	7/2/2009	14:50	58° 14,23' N	45° 38,55' W	2276.1	PARASOUND CTD/rosette water	profile break	
1 MSM12/650-	7/2/2009	14:50	58° 14,23' N	45° 38,55' W	2276.1	sampler CTD/rosette water	surface	
1 MSM12/650	7/2/2009	15:36	58° 14,23' N	45° 38,56' W	2274	sampler	at depth	Sl max. 2263m
1	7/2/2009	16:22	58° 14,23' N	45° 38,56' W	2279.4	sampler	on deck	
MSM12/650- 2	7/2/2009	16:31	58° 14,23' N	45° 38,56' W	2271.8	Box corer	surface	
MSM12/650- 2	7/2/2009	16:59	58° 14,23' N	45° 38,56' W	2274	Box corer	at sea bottom	SL max. 2291m
MSM12/650- 2	7/2/2009	17:32	58° 14,23' N	45° 38,56' W	2273.9	Box corer	on deck	
MSM12/650- 3	7/2/2009	17:42	58° 14.23' N	45° 38.56' W	2273.8	Gravity corer	surface	10 m Kernrohr
MSM12/650-	7/2/2009	18.10	58° 14 23' N	45° 38 56' W	2272 4	Gravity corer	at sea bottom	SL max 2201m
MSM12/650-	7/2/2000	18.10	58º 14 22' N	15° 38 56' W	2272.4	Gravity coror	off ground	55 mar. 22/111
MSM12/650-	7/2/2009	10.10	500 14,20 IN	450 20 541W	2272.2	Gravity corer	noisung	
3 MSM12/639-	//2/2009	18:48	58° 14,23' N	45° 38,56' W	22/3.3	Multibeam und	continue the	
1 MSM12/639-	7/2/2009	18:48	58° 14,23' N	45° 38,56' W	2273.3	PARASOUND Multibeam und	profile	
1 MSM12/651-	7/2/2009	22:23	58° 36,12' N	46° 25,82' W	2560.1	PARASOUND	profile break	
1 MSM12/651-	7/2/2009	22:23	58° 36,12' N	46° 25,82' W	2560.1	Box corer	surface	
1 MSM12/651	7/2/2009	22:53	58° 36,12' N	46° 25,83' W	2561	Box corer	at sea bottom	SL max. 2575m
1	7/2/2009	23:30	58° 36,12' N	46° 25,83' W	2564.4	Box corer	on deck	
MSM12/651- 2	7/2/2009	23:41	58° 36,12' N	46° 25,82' W	2560.5	Gravity corer	surface	10 m Kernrohr
MSM12/651- 2	7/3/2009	0:14	<u>58° 36,1</u> 2' N	46° <u>25,82</u> ' W	2560.1	Gravity corer	at sea bottom	SL max. 2582m, Fz max. 59,0 kN
MSM12/651- 2	7/3/2009	1:01	58° 36.12' N	46° 25.83' W	2562.6	Gravity corer	on deck	
MSM12/639- 1	7/3/2009	1:01	58° 36.12' N	46° 25.83' W	2562.6	Multibeam und PARASOUND	continue the profile	

MSM12/652-	7/3/2009	6:09	58° 33.76' N	46° 37.80' W	2705.8	Seismic reflection profile	Streamer into water	
MSM12/652-	7/3/2009	7:44	58° 31.13' N	46° 27.17' W	2610.4	Seismic reflection profile	airguns in the water	
MSM12/652-	7/3/2009	8.09	58° 30 34' N	46° 24 01' W	2577.7	Seismic reflection profile	profile start	Profil AWI 20090010
1	11312009	0.07	50 50,54 11	40 24,01 W	2311.1	beishie reneedon prome	prome start	erneut techn.
								PARASOUND -
MSM12/639-	7/2/2000	12.25	500 15 05LN	450 40 05LW	2295.4	Multibeam und	T.C. C	PC; Profil weiter nur
I MSM12/652-	//3/2009	13:35	58° 15,05' N	45° 40,85' W	2285.4	PARASOUND	Information	WP IODP_1306 -
1	7/3/2009	13:50	58° 14,32' N	45° 38,84' W	2274.7	Seismic reflection profile	alter course	neuer Kurs 146° PS-PC repariert;
MSM12/639- 1	7/3/2009	18:15	57° 55,68' N	45° 15,39' W	2477.3	Multibeam und PARASOUND	Information	PS wieder gestartet
								Kursänderung: Neuer Kurs 280°.
MSM12/652-	7/3/2009	23.24	57° 35 41' N	44° 47 67' W	3229.3	Seismic reflection profile	end of profile	Kanonen
MSM12/652-	7/2/2000	22.20	57° 25 16' N	44° 45 50' W	3240	Seismie reflection profile	Pomark	Beginn einholen
MSM12/652-	7/3/2009	23.39	57 55,10 N	44 45,50 W	3240		Kelliark	dei Kanonen
1 MSM12/652-	7/3/2009	23:48	57° 34,61' N	44° 44,82' W	3257.7	Seismic reflection profile	array on deck airguns in the	Airguns nun mit 3
1 MSM12/652-	7/4/2009	0:10	57° 33,16' N	44° 46,16' W	3292.1	Seismic reflection profile	water	Blasen Profil
1 MSM12/652-	7/4/2009	0:44	57° 33,93' N	44° 51,03' W	3235.7	Seismic reflection profile	profile start	AWI 20090011 Beginn KÄ auf
1 MSM12/652-	7/5/2009	0:31	57° 54,44' N	48° 31,76' W	3393.1	Seismic reflection profile	end of profile	011° Profil
1	7/5/2009	1:49	57° 54,19' N	48° 28,90' W	3387.8	Seismic reflection profile	profile start	AWI_20090012
MSM12/652-	7/5/2000	5.09	599 10 521 N	499 22 171 W	2449	Suissuis auffaction and Sta	Demont	Wegpunkt IODP
MSM12/652-	7/5/2009	5:28	58° 12,55° N	48° 22,17° W	3448		Remark	040
l MSM12/652-	7/5/2009	7:22	58° 21,92' N	48° 18,77' W	3465.4	Seismic reflection profile	end of profile	Neuer Kurs
1 MSM12/652-	7/5/2009	7:50	58° 24,19' N	48° 18,04' W	3465.4	Seismic reflection profile	alter course	089°rw
1 MSM12/652-	7/5/2009	9:16	58° 23,81' N	48° 18,75' W	3469.5	Seismic reflection profile	profile start	AWI-2009013
1 MSM12/652-	7/5/2009	18:48	58° 24,77' N	46° 48,38' W	2922.1	Seismic reflection profile	end of profile	Neuer Kurs
1 1 MSM12/652	7/5/2009	19:07	58° 24,81' N	46° 45,25' W	2913.1	Seismic reflection profile	alter course	112°rw
1 1 1	7/5/2009	19:10	58° 24,81' N	46° 44,77' W	2914.3	Seismic reflection profile	profile start	20090014
								Defekt des
								PARASOUND - PC;
MSM12/639- 1	7/5/2009	21:43	58° 20,17' N	46° 22,48' W	2801.1	Multibeam und PARASOUND	Information	Profil weiter nur mit EM120 (MB)
MSM12/652- 1	7/6/2009	10:41	57° 56,01' N	44° 28,82' W	2901.6	Seismic reflection profile	end of profile	
MSM12/652-	7/6/2009	10.56	57° 55 62' N	44° 27 03' W	2928 1	Seismic reflection profile	array on deck	
MSM12/652-	7/6/2009	12.12	57° 55 36' N	44° 17 40' W	3028.9	Seismic reflection profile	streamer on	
MSM12/639-	7/6/2000	14.20	57º 3/ 16' N	11° 11 71' W	3275 7	Multibeam und	profile brook	
MSM12/653-	7/(/2009	14.20	570 24 1 (1)	440 44 74 XX	2275.7	CTD/rosette water	gunfo	
MSM12/653-	7/0/2009	14:30	3/ 34,10 N	44 44,/4 W	32/3./	CTD/rosette water	surrace	
1 MSM12/653-	7/6/2009	15:35	57° 34,16' N	44° 44,75' W	3273.4	sampler CTD/rosette water	at depth	SI max. 3279m
1 MSM12/653-	7/6/2009	16:51	57° 34,16' N	44° 44,74' W	3272.9	sampler	on deck	
2 MSM12/653-	7/6/2009	16:57	57° 34,16' N	44° 44,74' W	3274.4	Gravity corer	surface	15 m Kernrohr
2 MSM12/653	7/6/2009	17:38	57° 34,16' N	44° 44,74' W	3274.7	Gravity corer	at sea bottom	SL max 3291 m
2 MSM12/652	7/6/2009	17:39	57° 34,16' N	44° 44,74' W	3274.4	Gravity corer	hoisting	
2	7/6/2009	18:27	57° 34,16' N	44° 44,74' W	3274.5	Gravity corer	on deck	
MSM12/653- 3	7/6/2009	18:34	57° 34,16' N	44° 44,74' W	3273.5	Box corer	surface	
MSM12/653- 3	7/6/2009	19:14	57° 34,16' N	44° 44,74' W	3274.5	Box corer	at sea bottom	SL max 3295 m
MSM12/653- 3	7/6/2009	19:58	57° 34.16' N	44° 44.74' W	3273.9	Box corer	on deck	
MSM12/639- 1	7/6/2009	19:58	57° 34.16' N	44° 44.74' W	3273.9	Multibeam und PARASOUND	continue the profile	
							i i i i i	1 · · · · · · · · · · · · · · · · · · ·

MSM12/639- 1	7/6/2009	20:52	57° 36.08' N	44° 51.18' W	3192.3	Multibeam und PARASOUND	profile break	
MSM12/654- 1	7/6/2009	20:52	57° 36,08' N	44° 51,18' W	3192.3	Box corer	surface	
MSM12/654- 1	7/6/2009	21:31	57° 36,08' N	44° 51,18' W	3196.5	Box corer	at sea bottom	SL max. 3207m
MSM12/654- 1	7/6/2009	22:14	57° 36,08' N	44° 51,18' W	3194.9	Box corer	on deck	
MSM12/654- 2	7/6/2009	22:25	57° 36,08' N	44° 51,18' W	3197.6	Gravity corer	surface	15 m Kernrohr
MSM12/654- 2	7/6/2009	23:07	57° 36.08' N	44° 51.18' W	3195	Gravity corer	at sea bottom	SL max. 3217m
MSM12/654- 2	7/6/2009	23:07	57° 36.08' N	44° 51.18' W	3195	Gravity corer	off ground hoisting	
MSM12/654- 2	7/6/2009	23:55	57° 36,08' N	44° 51,18' W	3193.6	Gravity corer	on deck	
MSM12/639- 1	7/6/2009	23:55	57° 36,08' N	44° 51,18' W	3193.6	Multibeam und PARASOUND	continue the profile	
MSM12/639- 1	7/7/2009	7:23	58° 14,32' N	44° 24,88' W	2384.7	Multibeam und PARASOUND	profile break	
MSM12/655- 1	7/7/2009	7:23	58° 14,32' N	44° 24,88' W	2384.7	CTD/rosette water sampler	surface	
MSM12/655- 1	7/7/2009	8:09	58° 14,32' N	44° 24,88' W	2383.8	CTD/rosette water sampler	at depth	SL max. 2373m
MSM12/655- 1	7/7/2009	8:54	58° 14,32' N	44° 24,88' W	2384.5	CTD/rosette water sampler	on deck	
MSM12/655- 2	7/7/2009	9:10	58° 14.31' N	44° 24.89' W	2383.4	Gravity corer	surface	10 m Kernrohr
MSM12/655- 2	7/7/2009	9:43	58° 14,31' N	44° 24,89' W	2386.7	Gravity corer	at sea bottom	SL max 2405 m
MSM12/655- 2	7/7/2009	9:44	58° 14.31' N	44° 24.89' W	2388.6	Gravity corer	off ground hoisting	
MSM12/655- 2	7/7/2009	10:20	58° 14.31' N	44° 24.89' W	2382.6	Gravity corer	on deck	
MSM12/639-	7/7/2009	10.20	58° 14 31' N	44° 24 89' W	2382.6	Multibeam und PARASOUND	continue the	
MSM12/639- 1	7/9/2009	8:01	60° 10.33' N	40° 7.02' W	2348.9	Multibeam und PARASOUND	profile break	
MSM12/656-	7/9/2009	8.01	60° 10 33' N	40° 7 02' W	2348.9	Gravity corer	surface	15 m Kernrohr
MSM12/656-	7/9/2009	8:33	60° 10.34' N	40° 7.02' W	2347.9	Gravity corer	at sea bottom	SL max. 2364m
MSM12/656-	7/9/2009	8:33	60° 10.34' N	40° 7.02' W	2347.9	Gravity corer	off ground hoisting	
MSM12/656- 1	7/9/2009	9:12	60° 10.33' N	40° 7.02' W	2347.8	Gravity corer	on deck	
MSM12/656- 2	7/9/2009	9:20	60° 10.33' N	40° 7.02' W	2350.3	Box corer	surface	
MSM12/656- 2	7/9/2009	9:50	60° 10.34' N	40° 7.02' W	2347.6	Box corer	at sea bottom	SL max. 2368m
MSM12/656- 2	7/9/2009	9:56	60° 10.33' N	40° 7.02' W	2346.9	Box corer	information	Stop hieven, Störung Winde
MSM12/656- 2	7/9/2009	10:00	60° 10.34' N	40° 7.02' W	2346.7	Box corer	information	Störung behoben, weiter hieven
MSM12/656- 2	7/9/2009	10:33	60° 10.33' N	40° 7.02' W	2347.3	Box corer	on deck	
MSM12/639- 1	7/9/2009	10:33	60° 10.33' N	40° 7.02' W	2347.3	Multibeam und PARASOUND	continue the profile	
MSM12/639-						Multibeam und		Unterbrechung der MB- Aufzeichnungen wegen Kalibrierung
1 MSM12/657-	7/9/2009	12:10	60° 17,21' N	39° 40,16' W	2562.4	PARASOUND CTD/rosette water	profile break	EM120
1 MSM12/657-	7/9/2009	12:15	60° 17,24' N	39° 40,14' W	2563.5	sampler CTD/rosette water	surface	
1 MSM12/657-	7/9/2009	13:05	60° 17,24' N	39° 40,14' W	2564.5	sampler CTD/rosette water	at depth	Sl max. 2553m
1	7/9/2009	14:08	60° 17,24' N	39° 40,14' W	2561.9	sampler	on deck	5 Profile zur
MSM12/639- 1	7/9/2009	14:45	60° 14,83' N	39° 32,73' W	2555.8	Multibeam und PARASOUND	continue the profile	Kalibrierung des EM 120
MSM12/639- 1	7/9/2009	15:31	60° 19,95' N	39° 29,91' W	2697.8	Multibeam und PARASOUND	end of track	KA auf Gegenkurs
MSM12/639- 1	7/9/2009	15:41	60° 20,01' N	39° 29,88' W	2699.9	Multibeam und PARASOUND	start track	
MSM12/639- 1	7/9/2009	16:25	60° 15,08' N	39° 32,66' W	2558.4	Multibeam und PARASOUND	end of track	KA zum Parallelprofil
MSM12/639- 1	7/9/2009	16:54	60° 15,39' N	39° 38,07' W	2514.5	Multibeam und PARASOUND	start track	
MSM12/639- 1	7/9/2009	17:42	60° 20,81' N	39° 35,04' W	2692	Multibeam und PARASOUND	end of track	KA auf Gegenkurs

MSM12/639-						Multibeam und	1	
1	7/9/2009	17:51	60° 20,86' N	39° 35,03' W	2694.7	PARASOUND	start track	
MSM12/639-						Multibeam und		
1	7/9/2009	18:38	60° 15,50' N	39° 38,03' W	2518	PARASOUND	end of track	
MSM12/639-						Multibeam und		
1	7/9/2009	19:16	60° 18,33' N	39° 38,88' W	2603.9	PARASOUND	start track	Querprofil
MSM12/639-						Multibeam und		
1	7/9/2009	20:12	60° 15,68' N	39° 26,91' W	2626.3	PARASOUND	end of profile	

		1	1				• • • • • • •	• • • •	l
data	time	latituda	longitudo	info	absorvation	approx.	seismic	seismic	nama
	1(.50		longitude		observation	distance	stop	start	
19/06/2009	10:59	01-4/.01 N	32°52.92°W	start MMSO	-	-	-	-	AMIM
				start shooting,					
10/06/2010	17.27	61045 00NI	22051 901W	seisinic test (4				17.27	
19/00/2010	17.57	01 43.08 N	32 31.80 W	aliguits)	-	-	-	17.37	Alvilvi
				(compressor					
				(compressor					
19/06/2009	17.49	61°44 25'N	32°51 32'W	MMSO		_	17.48		AMM
22/06/2009	9.55	58°45 44'N	44°29 09'W	start MMSO		_	-		DNS
22/00/2007	7.55	50 45.441	++ 2).0) W	start shooting		_	-	_	DING
22/06/2009	10.13	58°45 10'N	44°29 00'W	(4 airguns)		_		10.13	DNS
22/00/2009	10.15	50 15.1011	11 25.00 11	ston shooting				10.15	DIG
				(compressor					
22/06/2009	10:27	58°44.65'N	44°29.08'W	failure)	_	-	10:27	-	DNS
				start shooting					
22/06/2009	10:47	58°44.23'N	44°31.40'W	(4 airguns)	_	-	-	10:47	DNS
				stop shooting					
				(compressor					
22/06/2009	10:54	58°44.08'N	44°32.19'W	failure)	-	-	10:54	-	DNS
				start shooting					
22/06/2009	15:45	58°38.91'N	44°59.88'W	(4 airguns)	-	-	-	15:45	DNa
					Group (approx.				
					10-15)				
					Pilotwhales				
					ahead, distance				
					< 200m, pass				
					ship on port				
					side [distance >				
					200m at 17:13h				
					(wait 5 minutes				
22/06/2000	17.10	5002 C 400 I	45010 51037	stop & start	before restart	70	17.10	17 10	
22/06/2009	17:10	58°36.48'N	45°12./1'W	shooting	shooting)	70 m	1/:10	17:18	AMM
					2-3 Hering				
					(Financials)				
					(Finnwale)				
					pass ship on				
				ston & start	distance $\leq =$				
22/06/2009	20.30	58°32 21'N	45°43 98'W	shooting	200m	200 m	20.49	20.56	CP
<u></u>	_0.00				Whales	200 m		20.00	
				stop & start	distance <				
23/06/2009	12:10	58°27.83'N	48°12.35'W	shooting	200m	100 m	12:10	12:20	DNa
				Ŭ	Whales.	İ	1		İ
				stop & start	distance <				
23/06/2009	13:07	58°25.89'N	48°13.26'W	shooting	200m	100 m	13:07	13:13	DNa
					Whales,				
				stop & start	distance <				
23/06/2009	15:35	58°21.73'N	47°51.16'W	shooting	200m	< 200 m	15:33	15:39	DNa
					Whales,				
				stop & start	distance <				
24/06/2009	12:58	57°52.39'N	45°15.15'W	shooting	200m	50 m	12:58	13:03	DNa
					blow of a				
					whale approx.				
					1000 m ahead,				
					17:15 blow				
					ahead I point				
					port side				
					approx. 500 m,				
24/06/2000	17.11	57056 72INT	45055 1000		1/:20 DIOW	> 200			
24/00/2009	1/:11	3/ 30./3 N	45 55.12 W	-	aneau 5-4 point	∠200 m	-	-	AWIW

Appendix 5 Beobachtung mariner Säuger / Marine Mammal Observations

					portside				
					approx. 700 m				
25/06/2000	5.50	50000 71INI	47955 0000	-4	numerous	< 200	5.50		CD
25/06/2009	5:56	58°09.71'N	4/*55.00 W	stop shooting	Pilotwhales	< 200 m	5:50	-	CP
				still stopped &	group of		still		
25/06/2009	6:10	58°09.92'N	47°57.37'W	start shooting	whales	< 200 m	stopped	6:13	СР
				8	probably same				
				stop & start	group of				
25/06/2009	6:53	58°10.65'N	48°04.05'W	shooting	whales (05:56)	< 200 m	6:53	6:57	СР
					probably same				
					group of				
/ /				stop & start	whales (05:56				
25/06/2009	7:03	58°10.79'N	48°05.00'W	shooting	and 06:53)	< 200 m	7:03	7:10	СР
				stop shooting,					
				profile end,					
25/06/2009	10.49	58°14 86'N	48°40 87'W	streamer m,	_		10.49		DNS
27/06/2009	7.16	58°08 63'N	48°11 70'W	stop MMSO			-		
27/00/2007	7.10	50 00.05 1	40 11.70 W	start shooting	-	-	-	-	7 111111
27/06/2009	7:43	58°08.75'N	48°08.23'W	(4 airguns)	-	_	_	7:43	AMM
	,			(*****8*****)	Group (approx.			,	
					10) Pilotwhales				
					ahead 4.5 point				
					port side,				
					distance				
					approx. 400m,				
					pass ship on				
					port side				
					anstance				
					16.35h out of				
27/06/2009	16:25	58°11.85'N	46°43.53'W	-	sight	> 200 m	_	_	AMM
					Blow of a				
					whale (grey,				
					big) apprx.				
					100m ahead 3				
					point starbord				
					side, 05:22				
					another blow				
					anead 2 point				
					approx 50 m				
					05.25.2 whales				
					7-8 point				
				stop & start	starbord side				
29/06/2009	5:20	57°41.75'N	47°44.50'W	shooting	approx. 100m	100 m	5:20	5:31	AMM
					Group (school)				
					pilotwhales				
					ahad 1 point				
					starbord				
					approx. 150m,				
					starbord side				
					approx. 50-				
					150m, 06:48				
				stop & start	distance >				
29/06/2009	6:41	57°39.89'N	47°56.26'W	shooting	200m	150 m	6:41	6:53	AMM
					5-6 pilotwhales				
					approx. 300m				
					starbord side,				
					disappeared				
29/06/2000	8.11	57°37 02'N	48°14 12'W		within 5 minutes	> 200 m			DNS
29/00/2009	0.41	57 57.02 IN	TO 17.13 W	stop shooting	minutes	< 200 III	-	-	DINO
29/06/2009	13:35	57°29.31'N	48°57.44'W	profile end.	-	-	-	-	DNa

				streamer in,					
30/06/2000	13.05	57°30 17'N	18°31 60'W	stop MMSO					TE
30/06/2009	13.03	57°38 87'N	48°34 90'W	start shooting	-	-	-	-	TE
30/00/2007	15.10	57 50.07 1	40 J4.70 W	start shooting	Group (school)			_	112
					pilotwhales				
					passing on port				
					side <200m,				
					10:40 same				
					school				
					jumping, 10				
					15 individuals				
					distance >				
					300m, 10:50				
					same group,				
					increasing				
					distance >				
01/07/2000	10.20	57020 02DI	46027 00000	stop & start	500m, out of	< 200	10.20	10.22	DNG
01/0//2009	10:29	57°30.03'N	46°27.00°W	shooting stop shooting	signt 10:59	< 200 m	10:29	10:33	DNS
				profile end					
				streamer in,					
02/07/2009	1:37	58°31.67'N	46°24.13'W	stop MMSO	-	-	1:37	-	RS
03/07/2009	7:45	58°31.12'N	46°27.12'W	start MMSO	-	-	-	-	AMM
03/07/2009	7:57	58°30.75'N	46°25.64'W	start shooting	-	-	-	7:57	AMM
					small group				
					pilotwhales				
03/07/2000	0.28	58026 00'NI	16012 19W	stop & start	starbord side	200 m	0.28	0.22	DMS
03/07/2009	9:28	38 20.00 N	40 15.48 W	shooting	large group	200 m	9:28	9:52	DNS
					(30-40)				
					pilotwhales aft				
					port side, start				
				stop & start	diving, wait 5				
03/07/2009	15:06	58°08.61'N	45°31.95'W	shooting	minutes	200 m	15:06	15:11	DNa
					group (15-20)				
					pilotwhales aft				
					following the				
					ship.				
					dissapearing in				
				stop & start	starboard				
03/07/2009	16:41	58°02.31'N	45°23.62'W	shooting	direction	200 m	16:41	16:58	AMM
					blow of a				
					whale aft				
					starbord side				
04/07/2009	17:12	57°48.24'N	47°24.80'W	-	m	> 200 m	_	-	AMM
0110112009	17.12	57 10.2111	17 21.00 11		group	· 200 m			7111111
					pilotwhales aft				
					approx 3000 m				
					coming closer				
					up to 350 m,				
					stopped, last				
					17.40 out of				
04/07/2009	17:21	57°48.35'N	47°25.89'W	_	sight	> 200 m	_	-	AMM
					group				
					pilotwhales				
					distance >				
05/07/2009	13:41	58°24.28'N	47°36.81'W	-	200m	> 200 m	-	-	DNa
05/07/2000	12.50	20004 00DT	47025 51133	stop & start	group pilot	< 200	12.50	12.55	
05/07/2009	13:50	38⁻24.28'N	4/-35.51'W	snooting	wnaies	< 200 m	15:50	15:55	DNa
05/07/2009	14:55	58°24.28'N	47°23.07'W	-	whales, stav	> 200 m	_	_	DNa
00/0//2007	1 1 1.00	20 21.2011	1 1 40.01 11	1	minutes, stav	· 200 m	1	1	1 J 1 1 1 1

					around until				
					15:15, distance				
					approx. 400 m				
					group				
					pilotwhales 5				
					point port side				
					approx. 2000				
					m, passing port				
					side closest				
					500 m, 17:29				
05/07/2009	17:11	58°24.62'N	47°03.57'W	-	out of sight	> 200 m	-	-	AMM
					group				
					pilotwhales				
					approx. 700m				
					ahead 4 point				
					port side, 19:50				
					distance <				
					200m passing				
					port side, 19:53				
				stop & start	distance >				
05/07/2009	19:48	58°23.71'N	46°39.27'W	shooting	200m	< 200 m	19:50	19:56	AMM
					3 pilotwhales				
					approx. 50 m				
					ahead,				
					disappeared				
				stop & start	07:16 on				
06/07/2009	7:14	58°02.43'N	44°58.81'W	shooting	starbord side	50 m	7:14	7:19	AMM
				stop shooting,					
				profile end,					
				streamer in,					
06/07/2009	10:41	57°55.99'N	44°28.72'W	stop MMSO	-	-	10:41	-	DNS

Abbreviations:

- AMM Antje Müller-Michaelis
- CP Carl Peters
- DNa David Naafs
- DNS Daniela Schmidt
- RS Robert Sommerfeldt
- TE -Thorsten Eggers

field tapes		P00080	P00080	P00080	P00080/ P00082	P00081	P00081	P00084	P00084	P00084	P00086	P00086	P00086	P00086	P00086/ P00088
No of shots		1068	6180	7817	8110	8179	$\begin{array}{c} 1010\\ 0\end{array}$	1077	6219	4445	5556	8741	2000	3556	5556
shot interval [s]		10	10	10	10	10	10	10	10	10	10	10	10	10	10
total volume [1]		9.6	9.6	9.6	9.6	9.6	9.6	9.6	7.2	7.2	7.2	7.2	7.2	7.2	7.2
airgun configuration		4 GI-guns	4 GI-guns	4 GI-guns	4 GI-guns	4 GI-guns	4 GI-guns	4 GI-guns	3 GI-guns	3 GI-guns	3 GI-guns	3 GI-guns	3 GI-guns	3 GI-guns	3 GI-guns
length [nm]		14	85.4	103	113.6	116.5	147	13	88	60	75	118	27	48	75
	lon	-45.47	-48.2	-45.09	-48.6787	-44.4825	-48.9558	-48.94505	-46.16263	-46.402	-44.7925	-48.52443	-48.30316	-46.75071	-44.4827
pu	lat	58.56	58.46	57.84	58.2475	58.2325	57.64857	57.42337	57.50340	58.5278	57.59	57.90694	58.39239	58.41576	57.933
6	UTC	18:52:38	12:09:38	10:13:00	10:49:00	6:26:45	13:36:55	16:47	12:23:21	1:34:13	23:24:48	00:29:07	7:42:10	19:08:10	10:40
	date	22.6.09	23.6.09	24.6.09	25.6.09	28.6.09	29.6.09	30.6.09	1.7.09	2.7.09	3.7.09	5.7.09	5.7.09	5.7.09	6.7.09
	lon	-45.05	-45.47	-48.17	-45.09	-48.0945	-44.5345	-48.62114	-48.93522	-46.21445	-46.40040	-44.84871	-48.482	-48.3125	-46.73975
begin	lat	58.64	58.56	58.42	57.86	58.1473	58.199	57.6026	57.4729	57.5356	58.5056	57.5650	57.91	58.3968	58.4139
	UTC	10:13:00/ 16:06:00	18:52:38	13:26:58	12:09:20	8:00	8:13	13:48:43	18:38	13:25:50	8:08:50	00:43:13	1:48:50	9:16	19:12:30

Appendix 6 Seismische Parameter / Seismic recording parameters

	date	22.6.09	22.6.09	23.6.09	24.6.09	27.6.09	28.6.09	30.6.09	30.6.09	1.7.09	3.7.09	4.7.09	5.7.09	5.7.09	5.7.09
Line		AWI- 20090001	AWI- 20090002	AWI- 20090003	AWI- 20090004	AWI- 20090005	AWI- 20090006	AWI- 20090007	AWI- 20090008	AWI- 20090009	AWI- 20090010	AWI- 20090011	AWI- 20090012	AWI- 20090013	AWI- 20090014

MSM12/2-01-01 SL Eirik Drift MSM12/2 Recovery: 9.68 m 58° 12.57' N. 48° 22.16' W Water depth: 3450 m Lithology Texture Color **Description** 0 10 YR 5/3 0 - 7 cm: brown (10 YR 5/3) silty clay, some sand dark brown (10 YR 3/3) horizons at 3-4 and 6-7 cm 7 - 8 cm: pale brown (10 YR 6/3) silty clay 8 - 9 cm: light brownish gray (2.5 Y 6/2) silty clay 9 - 12 cm: pale brown (10 YR 6/3) to yellowish brown (10 YR 5/4) silty clay; 5Y4/2 9-10 cm dark brown (10 YR 3/3) horizon 12 - 77 cm: olive gray (5Y 4/2) silty clay; more silty, dark greenish gray (5BG 4/1) layers at 20-21,25-26, 29, 32, 33, 39, 41, 44, 50, 51, 53, 55, 60, 67, 68, and 69 cm 77 - 239 cm: olive gray (5Y 4/2) to dark olive gray (5Y 3/2) silty clay (some sand), dark greenish gray (5BG 4/1) laminae between 80 and 150 cm; between 177-195 cm more sandy (sandy silty clay); thin more sandy laminae 1 between 237 and 239 cm; single dropstone (0.3 cm in diameter) at 182 and 189 cm 239 - 251 cm: olive gray (5Y 4/2) to very dark gray (5Y 3/1) clayey sandy silt, fi ning upward; sharp boundary at bottom 251 - 323 cm: olive gray (5Y 4/2) to dark olive gray (5Y 3/2) silty clay, some sand; 5Y4/2 dropstone (1 cm in diameter) at 321-322cm 323 - 344 cm: olive gray (5Y 4/2) to dark olive gray (5Y 3/2) sandy silty clay, some to coarser grains/gravel (-> diamicton ?) 344 - 349 cm: very dark gray (5 Y 3/1) silty clay, bioturbated 5Y3/2 349 - 368 cm: olive gray (5Y 4/2) to dark olive gray (5Y 3/2) silty clay 368 - 371 cm: olive gray (5Y 4/2) and very pale brown (10 YR 7/3) (sandy) silty clay (detrital carbonate?); bioturbation 2 371 - 377 cm: olive gray (5Y 5/2) to grayish brown (2.5Y 5/2) silty clay 377 - 437 cm: grayish brown (2.5Y 5/2 - 10YR 5/2) silty clay, some sand; between 392 and 406 cm more coarse grained; dropstones at 395-397 cm (3 cm in Depth in core (m) diameters), 398 cm (1 cm in diameter), and 403-406 cm (4 cm in diameter) (-> diamicton ?); dark brown laminae at 417, 419, 420, and 424 cm; dark 5Y4/2-3/ brown horizon at 436-437 cm Λ 437 - 474 cm: olive gray (5Y 4/2) to dark olive gray (5Y 3/2) silty clay, some sand; large dropstone at 447-450 cm (5 cm in diameter); dark greenish grav lamina at 462 cm 474 - 483 cm: very pale brown (10 YR 7/3) (sandy) silty clay, towards bottom more coarse-grained (diamicton-type sediment) (detrital carbonate?); sharp 5Y4/2 boundary at base З to 483 - 542 cm: olive gray (5Y 4/2) to dark olive gray (5Y 3/2) silty clay to (sandy) silty 5Y3/2 clay; more sandy at 483-498, 508-516, 522-531, and 535-539 cm; small dropstones at 489, 493, and 498 cm, dropstone at 538 cm 542 - 551 cm: very dark gray (5 Y3/1) silty clay; gray mottling (large burrows, strongly bioturbated) 551 - 558 cm: dark gray (5Y4/1) and olive gray (5Y4/2) (sandy) silty clay SSS 5Y3/1 558 - 564 cm: dark gray (5Y4/1) and olive gray (5Y4/2) silty claystrongly bioturbated 5Y4/2 to 564 - 577 cm: olive gray (5Y 4/2) silty clay, mottled /biotur bated 5Y3/2 577 - 778 cm: olive gray (5Y 4/2) to dark olive gray (5Y 3/2) silty clay , more 10YR 7/3 5Y 5/2 silty/sandy at 580-586, 613-616, 640-656, 662-677, and 699-728 cm; 601-605 cm gray (5Y 6/1) (sandy) silty clay, bioturbation at top; dropstone (1cm in diameter) at 644-645 cm; thin dark greenish gray laminae at 726, 728, and 731 cm: moderately to strongly bioturbated (larg-sized burrows) 4 2.5Y5/2 between 740 and 770 cm to 778 - 968 cm: olive gray (5 Y 4/2) to dark olive gray (5 Y 3/2) silty clay, some sand; 10 YR 5/2 bioturbated (largte burrows)m at 801-810, 830-850 cm; small dropstones at 824, 827, 835, 893, and 913 cm; dropstone (1 cm in diameter) at 927-928 1222 cm; more silty/sandy at 910-922 cm 5Y4/2 to 5Y3/2 10 YR 7*1*3 5Y4/2 to 5Y3/2 5

Appendix 7 Kernbeschreibungen / Core descriptions
	MSM12/2-01-01 SL		Eirik Drift	MSM12/2
	Recovery	: 9.68 m	58° 12.57′ N, 48° 22.16′ W	Water depth: 3450 m
_	Lithology	Texture Color	Description	
5		5Y4/2 to 5Y3/2		
6		5Y 4/1-4/2 5Y 4/2 5Y 4/2 to 5Y 3/2 5Y 6/1		
pth in core (m) 2		5Y 4/2 to 5Y 3/2		
B 8		5Y3/2		
		5 Y 4 <i>1</i> 2		
9		5Y4/2 to 5Y3/2		
10	-			

	MSM12/2-02-01 SL		Eirik Drift	MSM12/2
	Recovery	: 9.81 m	58° 09.48′ N, 47° 52.44′ W	Water depth: 3306 m
~	Lithology	Texture Color	Description	
0 - - 1 -		2.5 Y 5/4 to 2.5 Y 5/2	0 - 1 cm: brown (10YR 5/3) silty clay, some sand 1 - 94 cm: Alternation of light clive brown (2.5Y 5 clay with some sand (at 1-11, 19-22, 33 sandy silty clay with a bundant mudclas 22-39, 42-59, and 70-79 cm; -> diamic (1cm, 1cm, and 3 cm in diameter), 29 c (0.5 cm in diameter), 43 cm (1 cm in diameter), 29 c diameter), and 86-87 cm (1 cm in diameter) 94 - 119 cm: grayish brown (2.5Y 5/2) and light cliv clay; some very small dropstones, larg 99-103 cm very dark grayish brown (10 mottled/bioturbated; at 118-119 cm da	d; some foraminifers /4) to gravish brown (2.5 Y 5 /2) silty 9-42, 59-70, and 79-94 cm) and sts and dropstones (at 11-19, ton): larger dropstones at 17-19 cm (0.5 cm in diameter), 31 cm ameter), 75-77 cm (3 cm in ameter), 75-77 cm (3 cm in leter) /e brown (2.5 Y 5 /4) (sandy) silty e dropstone at 107-109 cm; at DYR 3 /2) interval, rk brown layer
-		2.5Y 5/4-5/2 2.5Y 6/2 5Y 5/3 to 5Y 4/2	 119 - 125 cm: light brown gray (2.5Y 6/2) silty sand 125 - 129 cm: olive gray (5Y 4/2) silty clay; thin dat 129 - 132 cm: light brown gray (2.5Y 6/2) silty sand 132 - 162 cm: olive (5Y 5/3) to olive gray (5Y 4/2) silty 162 - 164 cm: grayish brown (2.5Y 5/2) sandy silty 164 - 194 cm: light yellowish brown (2.5Y 6/4) and some sand; some bioturbation; dropst diameter) and 185-186 cm (1 cm in dia 194 - 238 cm: olive gray (5Y 4/2) silty clay, some g 	y clay (diamiction) rk brown laminae at 125 and 126cm dy clay (diamiction) silty clay clay olive gray (5Y 4/2) silty clay with cones at 167-168 cm (1 cm in ameter) rrayish brown mottling n in diameter) at 200 cm
ω Depth in care (m) N		5Y 4/2 5Y 4/2 5Y 4/2 5Y 4/2 5Y 4/2 5Y 4/2 5Y 4/2 (+10YR 5/3) 0YR 5/3-4/2 5Y 4/2 and 2.5Y 5/4	(bioturbation); small dropstone (0.5 cr 238 - 245 cm: dark grayish brown (2.5Y 4/2) (sand 245 - 258 cm: olive gray (5Y 4/2) silty clay 258 - 288 cm: olive gray (5Y 4/2) silty clay, strong 288 - 295 cm: brown (10 YR 5/3) and dark grayish bioturbation 295 - 343 cm: olive gray (5Y 4/2) and light olive brow mottled/bioturbated 343 - 347 cm: brown (10 YR 5/3) to light olive brow bioturbation 347 - 349 cm: dark grayish brown (10 YR 4/2) silty 349 - 370 cm: olive gray (5Y 4/2) and light olive brow bioturbated 370 - 500 cm: olive gray (5Y 4/2) to dark olive gray 385-436 and 468-373 cm more stiff ar	n in diameter) at 209 cm y) silty clay mottling (10 YR 5/3)/bioturbation brown (10 YR 4/2) silty clay, some own (2.5 Y 5/4) silty clay, upper half n (2.5 Y 5/4) silty clay, some clay own (2.5 Y 5/4) silty clay, moderately own (2.5 Y 5/4) silty clay, moderately (5 Y 3/2) silty clay, some sand; at nd mud clasts
- 4 - 5 -		574/2- 2.575/4		

MSM12/2-02-01 SL			SL	Eirik [Drift		MSM12/2
	Recovery:	9.81 m		58° 09.48´ N	, 47° 52.44′	W	Water depth: 3306 n
_	Lithology	Texture C	Color		Description	า	
2 - 8 Depth in core (m) 2 - 9 - 9		Texture C 5Y 5Y 5Y 5Y 2.5 5Y 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5Y 5Y	Color Y 4 /2 to Y 3 /2 5 Y 6 /0 Y 4 /2 5 Y 5 /2 5 Y 5 /2 5 Y 5 /2 5 Y 5 /2 5 Y 5 /2 5 Y 5 /2 5 Y 5 /2 5 Y 5 /2 5 Y 5 /2 5 Y 5 /2 5 Y 5 /4 Y 4 /2 5 Y 3 /2 Y 4 /2 5 Y 4 /4 Y 4 /2	500 - 613 cm: olive gray 501-506, 54 609-613 cm diameter) a 613 - 621 cm: gray (2.5° 621 - 640 cm: olive gray bioturbated 640 - 668 cm: olive gray 666-668 cm 668 - 680 cm: grayish br 704-706 (2 cm (4 cm ir 723 - 736 cm: light olive 743 - 743 cm: light olive 743 - 743 cm: light olive 743 - 748 cm: yello wish 748 - 768 cm: olive gray large (6 cm 837 - 847 cm: yello wish- silty clay 847 - 860 cm: dark grayi 860 - 870 cm: olive gray 10 YR 3/2 921 - 950 cm: olive brow	, 47° 52.44 Description (5Y4/2) to dark oliv (3-553, 565-570, and large-sized burrows (518-519 cm (60) silty clay (619) (5Y4/2) and light o at 621-630 cm (5Y4/2) silty clay, s (5Y4/2) silty clay, s (5 cm in diameter), 5/4) sil brown (2.5Y5/2) sand .5 cm in diameter), brown (2.5Y5/2) sand .5 cm in diameter), brown (2.5Y5/4) sil brown (2.5Y5/4) sil brown (10YR5/4) sil (5Y4/2) (sandy) sil (5Y4/2) silty clay in diameter), well-ru brown (10YR5/4) a sh brown (2.5Y3/2) (5Y4/2) silty clay; 1 m (2.5Y4/4) silty clay) horizons/layers at (5Y4/2) to olive bro m (2.5Y4/4) silty clay) horizons/layers at	VV n //e gray (5 Y d 575-599) s (bioturbai -621 cm m live brown come sand crain diar clay; drops lty clay 712 (2x 0.5 lty clay; larr lty clay; mi y, some sai ty clay y, some sai ty clay wyish browr ounded dro nd very da silty clay; ver 905, 907-9 pown (2.5 Y 4 ay, some sai	Valer depth: 3306 m (3/2) silty clay, some sand; at cm more stiff and mud clasts; tion); drop stone (1.5 cm in ore dark gray - 2.5 Y 4/0) (2.5 Y 5/4) silty clay, mottled/ ; more sandy (diamicton) at neter) at 651-654 cm stone (1.5 cm in diameter) at /; numerous dropstones at cm in diameter), and 718-720 ge dropstone (4 cm in diameter id clasts ud clasts ud clasts ud clasts ud clasts ind; small dropstones (<0.5 cm n (2.5 Y 4/2) (sandy) silty clay; opstone at 823 - 827 cm rk grayish brown (10 YR 3/2) burrows (gray mottling) ioturbation ry dark grayish brown 08, 913, 914, and 916 cm 4/4) silty clay; some bioturbation and; some bioturbation
-		5555 5555 5555 5555 5555 2.5	5Y4/4				
	+ <u>ecceccicici</u> -						
10 -							

MSM12/2 MSM12/2-04-01 SL Eirik Drift Recovery: 9.96 m 57° 33.44' N. 48° 37.02' W Water depth: 3491 m Lithology Texture Color Description 0 0 - 4 cm: brown (10 YR 5/3) silty clay, some sand 10 YR 5*/*3 4 - 17 cm: brown (10 YR 5/3) to dark gravish brown (10 YR 4/2) sandy silty clay, laminated; more sandy toward the base 17 - 130 cm: dark gray (2.5 Y 4/0) silty clav 130 - 160 cm: brown (10 YR 4/3) silty clay 160 - 208 cm: dark grav (5Y 4/1) to olive grav (5Y 4/2) (silty) clay 208 - 309 cm: dark gray (5 Y 4/1) (silty) clay 309 - 326 cm: dark gray (5Y 4/1) silty clay 2.5Y4/0 326 - 338 cm: alternation of dark grav (5 Ý 4/1) sandy silty clay and silty clay (337-338 very dark gray); fi ning upward cycles (-> lamination); sharp contact at base 338 - 359 cm: dark gray (2.5 Y 4/0) silty clay 1 359 - 360 cm: light brownish gray (10 YR 6/2) sandy silty clay (detrital carbonate?) 360 - 401 cm: olive grav (5Y 4/2 - 5Y 5/2) silty clay, some sand; large dropstone (4 cm in diameter) at 386-388 cm 401 - 405 cm: gravish brown (2.5 Y 5/2) silty clay, some mottling/bioturbation 405 - 408 cm: light brownish gray (10 YR 6/2) sandy silty clay 10 YR 4/3 408 - 421 cm: grayish brown (2.5 Y 5/2) silty clay 421 - 430 cm: gravish brown (10 YR 5/2) silty clay 430 - 445 cm: olive gray (5 Y 5/2) silty clay, bioturbated 445 - 470 cm: gravish brown (10 YR 5/2) silty clay; some dark brown spekes 5Y4/1 470 - 502 cm: brown (10 YR 5/3) silty clay, slightly to moderately bioturbated (bioturbation increasing downward); very small black grains to 5Y4/2 502 - 528 cm: light olive brown (2.5 Y 5/4) silty clay, some bioturbation 2 528 - 580 cm: brown (10 YR 5/3) and grayish brown (10 YR 5/2) silty clay, some sand; mottled/bioturbated; large dropstone (6 cm in diameter) at 534-536 cm, sediment around: numerous foraminifers Depth in care (m) 580 - 602 cm: olive gray (5Y 4/2) silty clay 602 - 610 cm: dark gray (2.5 Y 4/0) silty clay, some sand; very stiff 610 - 721 cm: dark gray (5Y 4/1) silty clay; thin very dark gray laminae at 666 and 683 cm; dropstone (2 cm in diameter) at 718-719 cm 721 - 737 cm: olive gray (5Y 4/2) silty clay; numerous foraminifers 737 - 742 cm: gray (5Y 5/1) silty clay; numerous foraminifers 5Y4/1 742 - 775 cm: dark gray (5Y 4/1) silty clay 775 - 811 cm: olive gray (5Y 4/2) silty clay 811 - 895 cm: dark gray (5Y 4/1) to olive gray (5Y 4/2) silty clay 3 895 - 905 cm: dark gray (5Y 4/1) to olive gray (5Y 4/2) sandy silty clay, fining upward; sharp contact at base 905 - 911 cm: dark gray (5Y 4/1) to olive gray (5Y 4/2) silty clay 911 - 955 cm: dark gray (5 Y 4/1) silty clav 955 - 966 cm: dark gray (5Y 4/1) sandy silty clay, fi ning upward cycles (laminations); sharp contact at base 2.5Y4/0 966 - 996 cm: olive gray (5Y 4/2) silty clay 5Y4/2 to 5Y5/2 4 12.5Y 5/2 2.5Y5/2 10 YR 4*1*2 5Y5/2 10 YR 4/2 10 YR 5/3

5

MSM12/2-04-01 SL			Eirik Drift	MSM12/2
	Recovery	: 9.96 m	57° 33.44′ N, 48° 37.02′ W	Water depth: 3491 m
_	Lithology	Texture Color	Description	
5 -		2.5 Y 5/4		
-		10 YR 5 <i>/</i> 3 and 10 YR 5 <i>/</i> 2		
6-		5Y4/2		
Ŭ		<u>2.5¥4/0</u>		
7 -		5Y4/1		
E)		5Y4/2		
Ď		<u>5 Y 5/1</u>		
epth in c		5¥4/1		
□ 8 -		5Y4/2		
- 9 -		5Y 4/1 to 5Y 4/2		
-		5Y4/1		
10 -		5Y 4/2		

MSM12/2 MSM12/2-05-01 SL Eirik Drift Recovery: 14.94 m 57° 32.31' N. 48° 44.32' W Water depth: 3491 m Lithology Texture Color Description 0 0 - 899 cm: dark gray (5 Y 4/1) to olive gray (5 Y 4/2) silty clay, some sand; slightly to moderately bioturbated (35-60, 70-190, 210-230, 275-300, 340-405, 610-700, 810-880 cm; small black spots throughout; Dark greenish gray (5BG 4/1) layers/horizons at 13, 17, 23, 27-28, 32, 35, 41-42, 57-58, 66, 69, 79-80, 94-95, 107, 127-128, 194-195, 208, 222, 5Y5/2 242, 250, 323, 327, 330, 334, and 342 cm; to 5Y5/1 Bivalve shell at 346 cm: Sandy (fi ne sand) silty clay at 456-473 cm; fi ning upward; (Sandy) silty clay, olive gray (5Y 5/2) at 600-606 cm; sharp contact at top; More sandy at 612-616, 627-630, 637-646, and 745-780 cm (?) 899 - 911 cm: olive gray (5Y4/2), dark gray (5Y4/1) to very dark gray (5Y3/1) silty sandy clay (906-911) to sandy silty clay; fi ning upward 1 911 - 990 cm: dark gray (5 Y 4/1) to olive gray (5 Y 4/2) silty clay 990 - 1011cm: olive gray (5Y 4/2-5/2) sandy silty clay 1011 - 1063 cm: dark gray (5Y 4/1) to olive gray (5Y 4/2) silty clay; at 1114 cm thin sandy laver 1063 - 1101 cm: olive gray (5 Y 4/2) silty clay 1101 - 1107 cm: olive gray (5Y 4/2) sandy silty clay; at 1101 and 1102 dark gray, 5Y5/2 more sandy layers 1107 - 1293 cm: dark gray (5Y4/1) to olive gray (5Y4/2) silty clay, some sand 1293 - 1311 cm: olive gray (5Y 4/2-5/2) sandy silty clay; numerous dropstones, three larger ones at 93-94 (1.5 cm in diameter), 98-100 (1.5 cm in diameter). and 105-107 cm (2 cm in diameter), --> diamicton 1311 - 1313 cm: light brownish gray (10 YR 6/2) sandy silty clay, some pebbles 2 --> diamicton (detrital carbonate, Henrich Event 1?) 1313 - 1343 cm: olive gray (5Y 4/2) silty clay, some mud clasts 555 1343 - 1355 cm: olive brown (2.5 Y 4/4) silty clay Depth in care (m) 1355 - 1377 cm: olive gray (5 Y 4/2) silty clay; some small dropstones between 1364 5Y5/2 and 1377 cm; large dropstone (2 cm in diameter) at 1367-1369 cm 1377 - 1384 cm: olive gray (5 Y 4/2) silty clay 5Y4/2 1384 - 1391 cm: light brownish gray (10 YR 6/2) sandy silty clay, some pebbles --> diamicton (detrital carbonate, Henrich Event 2?); sharp contact at base 1391 - 1413 cm: olive gray (5Y 4/2) silty clay 1413 - 1423 cm: gray (5 ¥ 5/1) to olive gray (5 ¥ 4/2) silty clay 1423 - 1446 cm: dark gray (5 Y 4/1) silty clay, some coarser grained; light olive brown 3 spots in upper part (mottling/bioturbation); dropstone (2.5 cm in diameter) at 1443-1445 cm 1446 - 1474 cm: dark gray (5Y 4/1) to olive gray (5Y 4/2) silty clay, some bioturbation 1474 - 1479 cm: olive grav (5Y 4/2) and light brownish grav (10YR 6/2) silty clay, 5Y4/2 some sand; mottled/bioturbation 1479 - 1494 cm: dark gray (5Y 4/1) to olive gray (5Y 4/2) silty clay, some large burrows at 1481-1482 cm 4 5

	MSM12/2	-05-01 SL	Eirik Drift	MSM12/2
	Recovery:	14.94 m	57° 32.31′ N, 48° 44.32′ V	Water depth: 3491 m
	Lithology	Texture Color	Description	
10		5 Y 4/2 to 5 Y 4/1		
1 1 ·		5 Y 4 <i>1</i> 2		
12		5Y4/2 to 5Y4/1		
Depth in care (m)				
13		5Y 4 <i>/</i> 2- 5Y 4 <i>/</i> 1 10YR 6/2 5Y 4 <i>/</i> 2		
14·		2.5Y4/4 5Y4/2 5Y5/2 10YR6/2 5Y5/2		
		5Y5/1 5Y5/1 5Y4/1 5Y4/2		
15		5Y 5/2-4/1		

	MSM12/2	2-07-02 SL	Eirik Drift	MSM12/2
	Recovery	: 9.53 m	58° 14.22′ N, 45° 38.56′ W	Water depth: 2273 m
~	Lithology	Texture Color	Description	
0 -		2.5Y5/4	0 - 6 cm: light olive brown (2.5Y5/4) sandy silty 6 - 43 cm: light olive brown (2.5Y5/4) sandy silt mottling and layers at 6-11 cm; at 18 dropstones at 13-15 cm (2 cm in dia diameter): sharp contact at base	/ clay with foraminifers y clay, dark brown (10YR 3/3) 3-30 cm more fi ne-grained (silty clay) meter) and at 24-25 cm (1 cm in
-		5Y4/1	43 - 63 cm: dark gray (5Y 4/1) silty clay; thin mo 63 - 88 cm: olive gray (5Y 4/2) to dark gray (5Y 88 - 953 cm: dark gray (5Y 4/1), olive gray (5Y 4	re silty layer at 47 cm 4/1) sandy silty clay /2), to dark olive gray (5y 3/2) silty
1 -		5 Y 4/1 to 5 Y 4/2	clay, some sand; lighter, more bioturbated intervals a 402-412 cm (5Y 5/2), 440-445 cm (5 542-548 cm (5Y 5/1), 592-602 cm (5 682-688 cm (5Y 4/2), and 744-765 c dropstones at 100-102 (2 cm in diam 283-291 (8 cm in diameter), 351-353 512-514 cm (2 cm in diameter); mud	t 220-239 cm (olive brown mottling), Y 5/2), 498-506 cm (5Y 5/1), Y 5/1), 646-651 cm (5Y 5/1), m (5 4/2); leter), 138-140 (2 cm in diameter), (2 cm and 1.5 cm in diameter), and clasts at 164-167 and 333-363 cm
ath in care (m) N		5Y4/2 55555 (+2.5Y 4/2)		
з - З		5 Y 4/1 to 5 Y 4/2		
4 -		5Y 5/2 5Y 4/1 to 5Y 4/2 5Y 5/2 5Y 4/1		
5 -		5 Y 4/2		

	MSM12/2-07-02 SL		Eirik Drift	MSM12/2
	Recovery:	9.53 m	58° 14.22´ N, 45° 38.56´ W	Water depth: 2273 m
	Lithology	Texture Color	Description	
5		<u>575/1</u>		
		5Y4/1 to		
		5Y4/2		
-	- <u> </u>	<u>888 5Y5/1</u>		
		5 Y 4/1 to		
		5Y4/2		
6		\$\$\$\$\$\$\$\$ 5Y 5/1		
		555 555 5Y4/1		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5555 to 5555 5Y4/2		
		555 575/1		
		5Y3/2		
		<u>₩ 5¥4/1</u>		
7 ·				
		5¥30		
<u>E</u>				
Ū.		5×4/1-		
th in	(2)2)2)2)2)2)2 • 222222222 • 222222222	5Y 4/2		
Dep	- <i>AAAAAAAA</i> AAAAAAAA - AAAAAAAAA	5 Y 3/2		
0				
0		5 \ 4/1		
		to		
		51 + <i>I</i> L		
-	- 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
-		5¥3 <i>P</i>		
9.	-	to		
	- <u>2222222</u>			
]			
10·]

MSM12/2-08-02 SL		-08-02 SL	Eirik Drift	MSM12/2
	Recovery	14.16 m	58° 36.12′ N, 46° 25.82′ V	Water depth: 2563 m
~	Lithology	Texture Color	Description	
0 -		2.5 Y 5/4 10 YR 3/2 Ett. 2.5 Y 4/4	0 - 9 cm: light olive brown (2.5 Y 5/4) silty sar 9 - 16 cm: very dark grayish brown (10 YR 3/2 16 - 25 cm: olive gray (5 Y 4/2) silty clay, som 25 - 60 cm: olive brown (2.5 Y 4/4) (sandy) silt diameter), 51-54 (3 cm and 2.5 cm diameter)	ndy clay with foraminifers :) sandy silty clay; mud clasts e sand ty clay; dropstones at 39-40 (1 cm in in diameter), and 58-59 cm (1.5 cm in
1 ·		5555 5555 5555 5555 5555 5555 5555 5555 5555	 60 - 125 cm: olive gray (5Y 4/2) silty clay, son 114-125 cm; olive brown at 74-84 a 125 - 162 cm: olive brown (2.5 4/4) to grayish bioturbated 162 - 246 cm: olive gray (5Y 4/2) to dark gray dropstones at 191-198 cm (8 cm in diameter); sandy layer at 200 cm; y 246 - 325 cm: (very) dark gray (5Y 4/1-3/1) (s sandy 	ne sand; mud clasts at 74-84 and and 96-100 cm,slightly bioturbated brown (2.5Y5/2) silty clay, lower half r (5Y4/1) silty clay, some sand; large n diameter) and 229-233 cm (7 cm in yellowish brown mottling at 198-220 cm andy) silty clay, below 290 cm more
		2.5Y4/4 to 2.5Y5/2 5Y4/1	325 - 374 cm: very dark gray (5Y 3/1) silty cla 374 - 526 cm: dark gray (5Y 4/1) (sandy) silty and 462 cm; large burrows (5Y 3/1) dark gray sandy silty clay, mud clas (10YR 5/2) (sandy) silty clay, some 526 - 1024 cm: dark gray (5Y 4/1) to very dark silty clay, some sand; at 580-617 cr 567 cm thin very dark gray lamina;	y, at 325-342 cm more sandy clay; mud clasts at 395-415 and 452 at 375-382 cm; at 462-464 cm very its; at 479-488 cm grayish brown bioturbation k gray (5Y 3/1) and olive gray (5Y 4/2) m brownish mottling/bioturbation; at mud clasts at 680-726 cm; at 715-725
ore (m) N		to 5 Y 4 /2	and 975-981 cm very stiff; dropstor 796-797 cm (1 cm in diameter) 1025 - 1038 cm: olive gray (5Y 5/2) silty sand base 1038 - 1261 cm: dark gray (5Y 4/1) to olive gr 1038-1110 cm very stiff; at1050-100	hes at 542-543 (1 cm in diameter) and lyclay, fining upward; sharp contact at ray (5Y 4/2) siltyclay, some sand; at 55 and 1063-1065 cm gravish brown
S Depth in c		5Y4/1 to 5Y3/1	sandy silty clay; at 1052-1008 cm n dark gray silty clay; at 1238-1247 ci gray (5BG 4/1) layer at 1260-1261 d diameter), 1171 (0.5 cm in diameter) 1210-1211 cm (1 cm in diameter) 1261 - 1275 cm: olive gray (5Y 4/2) silty clay 1275 - 1282 cm: olive gray (5Y 5/2-4/2) silty clay 1282 - 1298 cm: dark gray (5Y 4/1) sandy silt 1298 - 1325 cm: olive gray (5Y 4/2) silty clay 1325 - 1363 cm: dark gray (5Y 4/1) to olive gr	matued/bloturpated; at 1100-11/0 cm m abundant foraminifers; dark greenish cm; dropstones at 1113-1115 (2 cm in), 1207-1208 (2 cm in diameter), and clay, some sand; abundant foraminifers y clay; sharp contact at base ray (5Y 4/2) silty clay, slightly
		5 Y 3 /1	1363 - 1372 cm: olive gray (5Y 4/2) sandy silt 1372 - 1416 cm: dark gray (5Y 4/1) to olive gr	ty clay; sharp contact at base 'ay (5Y 4 <i>1</i> 2) (sandy) silty clay
4 ·		5Y 4/1		
5 -		5Y4/1 5Y4/1 5Y4/1 5Y4/1		

MSM12/2-08-02 SL		-08-02 SL	Eirik Drift	MSM12/2
	Recovery:	14.16 m	58° 36.12′ N, 46° 25.82′ W	Water depth: 2563 m
_	Lithology	Texture Color	Description	
5 -		5 ¥ 4/1		
- 6 -		5 Y 4/1 to 5 Y 4/2		
Bepth in core (m)		5Y 4/1 to 5Y 3/1		
9 -		5 Y 3/1 to 5 Y 4/1 to 5 Y 4/2 5 Y 4/2		
10 -				

	MSM12/2	-10 <i>-</i> 02 SL	Eirik Drift	MSM12/2
	Recovery	14.18 m	57° 36.08′ N, 44° 51.18′ W	Water depth: 3192 m
_	Lithology	Texture Color	Description	
0 -		2.5Y 4/4 2.5Y 4/4 5Y 4/2 5Y 4/2 10 YR 5/4	0 - 3 cm: brown (10YR 5/3) (sandy) silty clay, sor 3 - 32 cm: olive brown (2.5Y 4/4) silty clay, some in lower part 32 - 37 cm: olive gray (5Y 4/2) silty clay, some sau bioturbated	ne foraminifers sand; mud clasts; a bundant forams nd; foraminifers; mottled/
1 -		5Y 5/2, 0YR 5/4, 0YR 5/3 5Y 5/2 3Y 5/2 10YR 4/3 2.5Y 5/4 2.5Y 5/4	 37 - 48 cm: yello wish brown (10YR 5/4) silty clay, mottled/bioturbated 48 - 76 cm: olive gray (5Y 5/2), yello wish brown (1 (10YR 4/3) silty clay, some sand; for an 76 - 91 cm: olive gray (5Y 5/2) silty clay with sand 91 - 101 cm: alternations of olive gray (5Y 5/2) an with sand 101 - 114 cm: olive brown (2.5Y 4/4) silty clay, son 114 - 144 cm: light olive brown (2.5Y 5/4) silty clay for aminifers 144 - 172 cm: grayish brown (2.5Y 5/2) to dark grain 	some sand; foraminifers; I0YR 5/4), and dark brown ninifers; strongly mottled/bioturbated I; mottled/bioturbated Id dark brown (10YR 4/3) silty clay me sand; mud clasts y, some sand; abundant ayish brown (2.5Y 4/2) silty clay, in upper part; mud clasts at
2 -		2.5 Y 4/2 to 2.5 Y 5/2 5 Y 4/1 to 5 Y 4/2 3335 5 Y 4/2	160-172 cm; sharp contact at base 172 - 214 cm: dark gray (5Y 4/1) to olive gray (5Y foraminifers; thin very dark gray layer 214 - 220 cm: olive gray (5Y 4/2) silty clay, some 220 - 259 cm: dark gray (5Y 4/1) silty clay, some 259 - 267 cm: olive gray (5Y 4/2) silty clay, some 267 - 277 cm: grayish brown (2.5Y 5/2) silty clay, bioturbated 277 - 289 cm: yellowish brown (10 YR 5/4) and oliv	(4/2) silty clay, some sand; rs at 183 and 187 cm sand; foraminifers; bioturbated sand; foraminifers sand; foraminifers; bioturbated some sand; foraminifers; ve gray (5Y 5/2) silty clay, some
ω Depth in care (m		5Y 4/1 5Y 4/2 2.5Y 5/2 10YR 4/3 2.5Y 5/2 2.5Y 5/2 2.5Y 5/2	sand; foraminifers; strongly mottled/l diameter at 277-279 cm 289 - 315 cm: grayish brown (2.5Y 5/2) silty clay, bioturbated in middle part 315 - 361 cm: olive gray (5Y 5/2-4/2) silty clay, so dropstone at 357-358 cm (2 cm in di 361 - 415 cm: light olive brown (2.5Y 5/4) silty cla foraminifers (lenses of forams); some horizons at 378-380 and 383-384 cm 415 - 515 cm: alternation of dark grayish brown (2 silty clay, some sand; foraminifers; ar clay	bioturbated; dropstone (2 cm in some sand; foraminifers; slightly me sand; some foraminifers; ameter) y, some sand; abundant e bioturbation; gray (5Y5/1) 2.5Y4/2) and olive brown (2.5Y4/4) t 491-493 olive gray (5Y5/2) silty
- 4 -		5Y5/2 to 5Y4/2 2.5Y5/4 2.5Y5/4 2.5Y4/2 2.5Y4/4 2.5Y4/2		
5 -		2.5¥4/4 2.5¥4/4		

	MSM12/2	2-10 <i>-</i> 02 SL	Eirik Drift	MSM12/2
	Recovery	/: 14.18 m	57° 36.08´ N, 44° 51.18´ W	Water depth: 3192 m
F -	Lithology	Texture Color	Description	
5 -		5Y4/1 5Y4/1 5Y4/1 to 5Y4/2	415 - 515 cm: alternation of dark grayish brown (silty clay, some sand; foraminifers; a clay 515 - 540 cm: dark gray (5Y4/1) to olive gray (5Y	2.5Y4/2) and olive brown (2.5Y4/4) t 491-493 olive gray (5Y5/2) silty (4/2) silty clay, some sand
- - 6 -		5Y5/2 2.5Y5/2 2.5Y5/4 5555 2.5Y4/4 10YR4/4 2.5Y4/4 2.5Y4/4 55557 10YR5/2 10YR5/2 10YR4/2 55574/4 55557 10YR4/2 55574/4	 540 - 550 cm: olive gray (5Y 5/2) silty clay, some 550 - 554 cm: grayish brown (2.5Y 5/2) silty clay 554 - 578 cm: light olive brown (2.5Y 5/4) silty clay clasts; some small dropstones, large 564-566 cm 578 - 585 cm: olive brown (2.5Y 4/4) silty clay, so 585 - 591 cm: dark yellowish brown (10YR 4/4) an silty clay, some sand; some lamina 591 - 605 cm: olive brown (2.5Y 4/4) silty clay, so 605 - 616 cm: light olive brown (2.5Y 5/4) silty clay, so 616 - 623 cm: grayish brown (10YR 5/2) silty clay biotur bation 623 - 650 cm: dark grayish brown (10YR 4/2) and some sand; dark brown laminae; for 	sand ay, some sand; a bundant mud e dropstone (4 cm in diameter) at ome sand; bioturbated nd light olive brown (2.5Y5/4) ation ome sand ay, some sand; lower part mottled/ y, some sand; foraminifers; some d olive brown (2.5Y4/4) silty clay, praminifers; lower part bioturbated
7 -		• 5Y 5/2 - 5Y 4/2	 650 - 657 cm: grayish brown (2.5 ¥ 5/2) silty clay, (1 cm in diameter) and 657 cm (0.5 657 - 683 cm: olive gray (5 ¥ 5/2-4/2) silty clay wi (diamicton) 683 - 702 cm: olive gray (5 ¥ 4/2) silty clay, some bioturbation 702 - 760 cm: dark gray (5 ¥ 4/1) silty clay with sa 	some sand; dropstones at 651-652 5 cm in diameter) th sand, numerous small dropstones sand; foraminifers; some mottling/ and; 717-750 bioturbated and
Depth in core (m		5Y4/1 2.5Y4/0 (= N4)	a bundant foraminifers 760 - 775 cm: dark gray (2.5 4/0 = N4) silty clay v 775 - 799 cm: dark gray (5Y 4/1) silty clay with sa at 775 cm (thin horizon), 786-788 c 799 - 820 cm: dark gray (2.5 4/0 = N4) silty clay v dropstones (5-8 cm in size) at 807- 820 - 844 cm: olive gray (5Y 4/2) silty clay with sa 844 - 872 cm: grayish brown (10 YR 5/2) to light o some sand; some bioturbation	with sand and; enrichment of foraminifers cm and 795-799 cm with sand; several very large -818 cm; very stiff (diamicton) and blive brown (2.5 Y 5/4) silty clay,
8 -		2.5Y4/0 (= N4) 5Y4/2	872 - 895 cm: olive gray (5Y4/2) silty clay with sa 895 - 917 cm: dark gray (2.5Y4/0 = N4) silty clay 917 - 943 cm: dark gray (2.5Y4/0) to dark olive g 943 - 944 cm: light brownish gray (10YR 6/2) san 944 - 983 cm: dark gray (5Y4/1) silty clay with sa upper and lower parts bioturbated 983 - 1008 cm: olive gray (5Y4/2) silty clay with sa	and; mud clasts in upper half / with sand; very stiff /ray (5Y3/2) silty clay with sand dy silty clay horizon (detr.carb?) and; some forminifers below 960 cm; sand; some bioturbation
9 -		to 2.5Y 5/4 5Y 4/2 2.5Y 4/0 (= N4)		
-		2.5 ¥ 4/0 to 5 ¥ 3/2 5 ¥ 4/1		
- UF	<u>essessé</u>	22223		

	MSM12/2-11-01 SL		-	Eirik D	rift	MSM12/2
	Recovery	: 9.52 m		58° 14.32′ N,	44° 24.88′ W	Water depth: 2384 m
0	Lithology	Texture Co	lor		Description	
0 -		10 YF	15/2 15/3 0-1	0 cm: grayish brown base	(10 YR 5/2) sand, a bunda	nt foraminifers; sharp contact at
		2.5Y	4/2 10 -	19 cm: brown (10 YR a bundant muc	5/3) (and grayish brown 2 d clasts; some lamination	.5Y5/2) silty clay with sand;
-		2.5Y	4/4 31 - 70 -	31 cm: dark grayish b 70 cm: olive brown (2 105 cm: dark grayish	rown (2.5 Y 4/2) sandy si 1.5 Y 4/4) silty clay with sa brown (2.5 Y 4/2) silty cla wk brown) sharp contact	ty clay nd y with sand; at 95-105 cm some at base
4 -		2.5Y	105	- 177 cm: dark gray (£ 155-163 cm) s (140-167 cm) sediments = f	5Y4/1) to very dark gray sandy silty clay; general fi alternation of coarse (mo i ning-upward cycles	5Y3/1) and gray (2.5Y5/0; ning upward;middle part re sandy)/fine (more silty-clayey)
·			177	- 216 cm: dark gray (5 at 195-197 cm	5Y4/1) silty clay with sand	d; dropstone (1.5 cm in diameter)
		5Y4	4/1 216	- 237 cm: grayish bro abundant muq	wn (10 YR 5/2) and olive g clasts; mottled/bioturba	ray (5Y 4/2) silty clay with sand; ed
-			3/1 237 285 75/0 289	- 285 cm: dark gray (5 - 289 cm: gray (5 Y 5 / - 308 cm: (dark) olive	o Y 4/1) silty clay with sand 1) silty clay with sand gray (5 Y 4/2-3/2) silty cla	d; some mud clasts in upper part
		5Y3	3/1 308	bioturbated - 340 cm: dark grav (F	$5 \times 4/1$) to olive grav (5 $\times 4$	(2) sandy silty clay to silty clay
			340	with sand; coa - 347 cm: gray (2.5Y	rse/fi ne alternations with 5.0) silty clay with sand, s	n fi ning-upward cycles (325-340 cm ome bioturbation
2 -		514	347	- 357 cm: dark gray (5 with sand; coa - 367 cm: gray (5Y 5/	5Y 4/1) to olive gray (5Y 4 rse/fi ne alternations with 1) silty clay with sand, bio	/2) sandy silty clay to silty clay n fi ning-upward cycles turbation: dropstone (1.5 cm in
(m)		555510YR 5555 + 5Y	5/2 4/2 367 375	diameter) at 30 - 375 cm: dark gray (5 - 389 cm: gray (5 \ 5 \	63-364 cm 5Y4/1) silty clay with sand 1) silty clay with sand bio	d; some bioturbation in lower part turbation
pth in ca		544	389 1/1 397	- 397 cm: dark gray (5 dropstone (2 c - 429 cm: olive gray (5 foraminifers a	574/1) silty clay with sand m in diameter) at 394-396 574/2) to dark gray (574 t 405-425 cm	d, gray mottling (bioturbation); 5 cm /1) sandy silty clay; a bundant
DG		<u> </u>	429 436	- 436 cm: gray (5Y 5/ - 468 cm: alternations	1) silty clay with sand, bio s of olive gray (5Y 4/2) sau fine fining-upward cycle	turbation ndy silty clay and silty clay with
3 -		5Y4/2	2-3/2 468	- 475 cm: grayish bro - 519 cm: dark gray (5	wn (10 YR 5/2) silty clay u 5 Y 4/1) sandy silty clay an	ith sand; mottled/bioturbated d silty clay with sand;
			4 <i>1</i> 2	at 489-493 cm	n some large burrows	
-			5.0			
			5/1			
		SSSS 51	5/1			
4 -		5355 5Y	<u>+/1</u>			
			4 <i>1</i> 2			
		5Y-	4 /1 5 /1			
-		5Y4	+/2			
			50			
			+/1			
5 -		2002				

	MSM12/2-11-01 SL		Eirik Drift	MSM12/2
5 -	Recovery: 9.52 m		58° 14.32′ N, 44° 24.88′ W	Water depth: 2384 m
	Lithology	Texture Color	Description	
		5Y4/1	 475 - 519 cm: dark gray (5Y 4/1) sandy silty clay and silty clay with sand; at 489-493 cm some large burrows 519 - 533 cm: gray (5Y 5/1) silty clay with sand, moderate biotur bation 533 - 575 cm: olive gray (5Y 4/2) silty clay with sand; abundant mud clasts in upper half; large dropstone (8 cm in diameter) at 559-565 cm 	
- - 6 -		5Y4/2 5Y5/1 5Y4/1 - 5Y3/2 5Y4/1 - 5Y3/2 5Y4/2 5Y4/2 5Y4/2 5Y4/2 5Y4/2	 575 - 584 cm: gray (5Y 5/1) silty clay with sand, r 584 - 658 cm: dark gray (5Y 4/1), olive gray (5Y 4/1), olive gray (5Y 4/2) silty clay to silty clay with sand; interstrongly bioturbated (partly 5Y 4/2 w 630-633, and 648-655 cm 658 - 681 cm: olive gray (5Y 4/2) silty clay with s 681 - 691 cm: very dark gray (5Y 3/1) sandy silty 691 - 709 cm: dark olive gray (5Y 3/2) silty clay with s 731 cm: dark olive gray (5Y 4/2) with grayish bro 731 - 758 cm: olive gray (5Y 4/2) silty clay with s 758 - 796 cm: very dark gray (5Y 3/1) to dark olive gray (5Y 3/2) silty clay with s 	nottled (5Y 4/2)/bioturbated /2) to dark olive gray (5Y 3/2) sandy calated gray (10YR 5/1) intervals, ith 10YR 5/1 mottling) at 599-603, and; some bioturbation clay <i>i</i> th sand r-rich silty clay with sand; 726-731 cm wn (10YR 5/2) mottling (bioturbation) and <i>ke</i> gray (5Y 3/2) silty clay with sst part; large dropstone (3.5 cm in and; some bioturbation at base
© Depth in core (m)		5Y 3/2 5Y 3/2 5Y 3/2 5Y 4/2 5Y 3/2 5Y 3/2 5Y 3/2 5Y 3/2 5Y 3/2	 809 - 838 cm: dark olive gray (5Ý 3/2) foráminifei bioturbated at top 838 - 850 cm: olive gray (5Y 4/2) silty clay with s: 850 - 858 cm: grayish brown (10YR 5/2) silty clay 858 - 896 cm: dark gray (5Y 4/1) to olive gray (5Y 6) foráminifers; se veral large dropsto 885-893 cm 896 - 914 cm: olive gray (5Y 5/2-4/2) silty clay with 914 - 952 cm: grayish brown (2.5Y 5/2) silty clay 	r-rich silty clay with sand, and / with sand; bioturbation around top / 4/2) silty clay with sand; abundant nes (2-7 cm in diameter) at th sand with sand; some bioturbation
9 -		5Y4/2 5Y4/1 to 5Y4/2 5Y5/2- 5Y4/2 5Y4/2 2.5Y5/2		
10 -	-			

Die "Berichte zur Polar- und Meeresforschung" (ISSN 1866-3192) werden beginnend mit dem Heft Nr. 569 (2008) ausschließlich elektronisch als Open-Access-Publikation herausgegeben. Ein Verzeichnis aller Hefte einschließlich der Druckausgaben (Heft 377-568) sowie der früheren **"Berichte zur Polarforschung** (Heft 1-376, von 1982 bis 2000) befindet sich im Internet in der Ablage des electronic Information Center des AWI (**ePIC**) unter der URL http://epic.awi.de. Durch Auswahl "Reports on Polar- and Marine Research" auf der rechten Seite des Fensters wird eine Liste der Publikationen in alphabetischer Reihenfolge (nach Autoren) innerhalb der absteigenden chronologischen Reihenfolge der Jahrgänge erzeugt.

To generate a list of all Reports past issues, use the following URL: http://epic.awi.de and select the right frame to browse "Reports on Polar and Marine Research". A chronological list in declining order, author names alphabetical, will be produced, and pdf-icons shown for open access download.

Verzeichnis der zuletzt erschienenen Hefte:

Heft-Nr. 586/2009 — "The Expedition of the Research Vessel 'Polarstern' to the Antarctic in 2006 (ANT-XXIII/7)", edited by Peter Lemke

Heft-Nr. 587/2009 — "The Expedition of the Research Vessel 'Maria S. Merian' to the Davis Strait and Baffin Bay in 2008 (MSM09/3), edited by Karsten Gohl, Bernd Schreckenberger, and Thomas Funck

Heft-Nr. 588/2009 — "Selected Contributions on Results of Climate Research in East Germany (the former GDR)", edited by Peter Hupfer and Klaus Dethloff

Heft-Nr. 589/2009 — "The Expedition of the Research Vessel 'Polarstern' to the Arctic in 2008 (ARK-XXIII/1)", edited by Gereon Budéus

Heft-Nr. 590/2009 — "The Expedition of the Research Vessel 'Polarstern' to the Arctic in 2008 (ARK-XXIII/2)", edited by Gerhard Kattner

Heft-Nr. 591/2009 — "The Expedition of the Research Vessel 'Polarstern' to the Antarctic in 2008 (ANT-XXIV/4)", edited by Andreas Macke

Heft-Nr. 592/2009 — "The Expedition of the Research Vessel 'Polarstern' to the Antarctic in 2007 (ANT-XXIV/1)", edited by Sigrid Schiel

Heft-Nr. 593/2009 — "The Campaign MELTEX with Research Aircraft 'POLAR 5' in the Arctic in 2008", edited by Gerit Birnbaum, Wolfgang Dierking, Jörg Hartmann, Christof Lüpkes, André Ehrlich, Thomas Garbrecht, and Manuel Sellmann

Heft-Nr. 594/2009 — "The Expedition of the Research Vessel 'Polarstern' to the Antarctic in 2008 (ANT-XXV/1)", edited by Gerhard Kattner and Boris Koch

Heft-Nr. 595/2009 — "The Expedition of the Research Vessel 'Polarstern' to the Antarctic in 2008/2009 (ANT-XXV/2)", edited by Olaf Boebel

Heft-Nr. 596/2009 — "Crustal evolution of the submarine plateaux of New Zealand and their tectonic reconstruction based on crustal balancing", by Jan Werner Gerhard Grobys

Heft-Nr. 597/2009 — "The Expedition of the Research Vessel 'Polarstern' to the Arctic in 2008 (ARK-XXIII/3)", edited by Wilfried Jokat

Heft-Nr. 598/2009 — "The Expedition of the Research Vessel 'Pelagia' to the Natal Basin and the Mozambique Ridge in 2009 (Project AISTEK III)", edited by Wilfried Jokat

Heft-Nr. 599/2009 — " The Expedition of the Research Vessel 'Maria S. Merian' to the Labrador Sea in 2009 (MSM12/2)", edited by Gabriele Uenzelmann-Neben