publisher:10.1086/667589

Antagonistic Coevolution Accelerates the Evolution of Reproductive Isolation in Tribolium castaneum


Contact
Mathias.Wegner [ at ] awi.de

Abstract

The evolution of reproductive isolation among populations is often the result of selective forces. Among those, parasites exert strong selection on host populations and can thus also potentially drive reproductive isolation. This hypothesis has yet to be explicitly tested, and here we set up a multigenerational coevolution experiment to explore this possibility. Five lines of Tribolium castaneum were allowed to coevolve with their natural parasite, Nosema whitei; five paired lines of identical origin were maintained in the absence of parasites. After 17 generations, we measured resistance within and reproductive isolation between all lines. Host lines from the coevolution treatment had considerably higher levels of resistance against N. whitei than their paired host lines, which were maintained in the absence of parasites. Reproductive isolation was greater in the coevolved selection regime and correlated with phenotypic differentiation in parasite resistance between coevolved host lines. This suggests the presence of a selection-driven genetic correlation between offspring number and resistance. Our results show that parasites can be a driving force in the evolution of reproductive isolation and thus potentially speciation.



Item Type
Article
Authors
Divisions
Programs
Publication Status
Published
Eprint ID
31489
DOI https://www.doi.org/10.1086/667589

Cite as
Bérénos, C. , Schmid-Hempel, P. and Wegner, K. M. (2012): Antagonistic Coevolution Accelerates the Evolution of Reproductive Isolation in Tribolium castaneum , The American Naturalist, 180 (4), pp. 520-528 . doi: https://www.doi.org/10.1086/667589


Share


Citation

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item