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The Problem 
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Application Example 

Information: Model Information: Observation 

S. Loza et al., Journal of Marine Systems 105 (2012) 152-162 

Model surface temperature Satellite surface temperature 

Norway 
Sweden 

Finland 

UK 

  Forecasting in North & Baltic Seas 
  Combine model and observations for optimal initial condition 
  State vector size: 2.6 · 106 (4 fields 3D, 1 field 2D) 
  Obervations: 10000 – 37000 (Surface temperature only) 
  Ensemble size 8 

Oberwolfach 



Forecast deviation from satellite data 

No assimilation Assimilation 

RMS 

bias 

Improvements also sub-surface and in other fields 
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Problem: Estimate model state (trajectory) from 
•  guess at initial time 
•  model dynamics 
•  observational data 
 

Characteristics of system: 
•  approximated by discretized differential equations 
•  high-dimension - O(107-109) 
•  sparse observations 
•  non-linear 

Current “standard” methods:  
•  Optimization algorithms (“4DVar”) 

•  Ensemble-based estimation algorithms 

Data Assimilation 

€ 

This talk! 
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Ensemble-based Kalman Filter 
First formulated by G. Evensen (EnKF, 1994) 
Kalman filter: express probability distributions by mean  

and covariance matrix 
EnKF: Use ensembles to represent probability distributions  

observation 

time 0 time 1 time 2 

analysis 

ensemble 
forecast 

ensemble 
transformation 

initial 
sampling 

state 
estimate 

forecast Looks trivial! 

BUT: 

There are 
many 

possible 
choices! 
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Computational and Practical Issues 

Data assimilation with ensemble-based Kalman filters is costly!  

Memory: Huge amount of memory required 
  (model fields and ensemble matrix)  

Computing: Huge requirement of computing time 
  (ensemble integrations) 

Parallelism: Natural parallelism of ensemble integration exists  
  (needs to be implemented) 

„Fixes“: Filter algorithms do not work in their pure form 
  („fixes“ and tuning are needed) 
  because Kalman filter optimal only in linear case 
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What we are looking for… 

  Goal: Find the assimilation method with 
  smallest estimation error 
  most accurate error estimate 
  least computational cost 
  least tuning  

  Want to understand and improve performance 

  Difficulty: 

  Optimality of Kalman filter well known for linear systems 

  No optimality for non-linear systems 

➜  limited analytical possibilities 

➜  apply methods to test problems 

€ 
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Computing 
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  single 
program 

state 
time 

state 
observations 

mesh data 

Indirect exchange (module/common) 
Explicit interface 

 

 

 

 

  

Model 
initialization 

time integration 
post processing 

Filter 
Initialization 

analysis 
re-initialization 

Observations 
obs. vector 

obs. operator 
obs. error 

Logical separation of assimilation system 

Core of PDAF 

Nerger, L., Hiller, W. (2012). Software for Ensemble-based DA Systems – Implementation 
and Scalability. Computers and Geosciences. In press.  doi:10.1016/j.cageo.2012.03.026 



PDAF: A tool for data assimilation 

PDAF - Parallel Data Assimilation Framework  
  a software to provide assimilation methods 
  an environment for ensemble assimilation 
  for testing algorithms and real applications 
  useable with virtually any numerical model 
  also:  

•  apply identical methods to different models 
•  test influence of different observations 

  makes good use of supercomputers  
(Fortran and MPI; tested on up to 4800 processors) 

More information and source code available at 

http://pdaf.awi.de 
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Analysis Formulations 
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  Properties and differences are hardly understood 
  Learn from studying relations and differences 

_ 
_ 

ETKF 

Ensemble-based/error-subspace Kalman filters 

A little “zoo” (not complete): 

EAKF 

ETKF 

EnKF(94/98) 

SEIK 

EnSRF SEEK 

RRSQRT 

ROEK 

MLEF 
EnKF(2003) 

EnKF(2004) 
SPKF 

ESSE 

ESTKF 

EnKF(94/98) 
SEEK 

SEIK 
Studied in Nerger 

et al. (2005) SEIK 

New study 
(Nerger et al. 2012) 

New filter 
formulation 

ESTKF: L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345 

RHF 

anamorphosis 



Model Equations 

Stochastic dynamic model: 

Stochastic observation model: 

Assumptions: 
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Model error 

Observation error 
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The Ensemble Kalman Filter (EnKF, Evensen 94) 

Generate random ensemble 

Ensemble statistics approximate      and covariance  

Initialization: 

Forecast: 

Analysis: 

Kalman filter 

5 EnKF
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Issues of the EnKF94 

Monte Carlo Method 

  ensemble of observations required 
(samples matrix R; introduces sampling error) 

 

Inversion of large matrix 

(can be singular, possibly large differences in eigenvalues >0) 
 

Alternative: 

  Compute analysis in space spanned by ensemble 

Methods: Ensemble Square-Root Kalman Filters, e.g. 

  SEIK (Pham et al., 1998) 

  ETKF (Bishop et al., 2001) 
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Ensemble Transform Kalman Filter - ETKF 

Ensemble perturbation matrix  

 

Analysis covariance matrix 

 

“Transform matrix” (in ensemble space) 

                                                                                             

Ensemble transformation 

 

Ensemble weight matrix 

 
•                     (symmetric square root) 
•      is identity or random orthogonal matrix with EV                   ) 

a. Analysis step of the ETKF

The ETKF has been introduced by Bishop et al. (2001). For the review of the analysis

step of the ETKF, we follow Yang et al. (2009) and Hunt et al. (2007).

The computations performed in the ETKF are based on a square root of the state covari-

ance matrix given by the ensemble perturbations X′. The analysis state covariance matrix

Pa can be written as a transformation of the forecast ensemble perturbations as

Pa = X
′fA(X

′f)T . (4)

Here, A is an m×m matrix defined by

A−1 := (N − 1)I+ (HX
′f)TR−1HX

′f . (5)

A is frequently denoted as ’transform matrix’. The factor γ is used to inflate the forecast

covariance matrix to stabilize the filter performance.

The state estimate is updated according to

xa = xf +X
′fwETKF (6)

with the weight vector

wETKF := A
(

HX
′f
)T

R−1
(

yo −Hxf
)

. (7)

The square root of the forecast state covariance matrix is given by the perturbation

matrix X
′f up to the scaling by (m− 1)−1. To obtain the square root of the analysis state

covariance matrix, X
′f is transformed as

X
′a = X

′f WETKF . (8)
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The ETKF and the SEIK filter are ensemble-based Kalman filters. The state of a physical

system, like the ocean or atmosphere, is estimated at time tk by the state vector xk of size

n and the corresponding error covariance matrix Pk. An ensemble of m vectors x(α), α =

1, . . . , m, of model state realizations represents these quantities. The state estimate is given

by the ensemble mean

xk :=
1

m

m
∑

i=1

x(i)
k . (1)

With the ensemble matrix

Xk :=
[

x(1)
k , . . . ,x(m)

k

]

, (2)

Pk is given as the ensemble covariance matrix

Pk :=
1

m− 1
X′

k (X
′
k)

T (3)

where X
′

k := Xk −Xk with Xk = [xk, . . . ,xk] is the matrix of ensemble perturbations.

A forecast is computed by integrating the state ensemble using the numerical model until

observations become available. The observations are available in form of the vector yo
k of

size p. The model state is related to the observations by yo
k = Hk(x

f
k) + εk where H is the

observation operator, which is assumed to be linear. The vector of observation errors, εk, is

assumed to be a white Gaussian distributed random process with covariance matrix R.

The analysis equations of the ETKF and the SEIK filter are discussed separately below.

As all operations are performed at the same time tk, the time index k is omitted.
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The weight matrix WETKF is computed from the square-root C with CCT = A as

WETKF :=
√
N − 1CΛ. (9)

Here, Λ is an arbitrary orthogonal matrix of size m × m or the identity. To preserve the

ensemble mean, the vector (1, . . . , 1)T has to be an eigenvector of Λ.

When the ETKF was introduced by Bishop et al. (2001), the form of the square-root C

was not further specified. Studies about the properties of the ensemble transformation in

different square-root filters (e.g., Wang et al. 2004; Sakov and Oke 2008) have shown that

a symmetric matrix C ensures that the ensemble mean is preserved during the ensemble

transformation. The use of the symmetric square root

Csym := US−1/2UT (10)

has been proposed also for the localized version of the ETKF (LETKF, Hunt et al. 2007).

Eq. (10) can be obtained from the singular value decomposition (SVD)USV = A−1. The use

of matrix Csym from Eq. (10) provides a minimum transformation of the ensemble because

the distance of the square-root from the identity matrix is minimized in the Frobenius norm

(see Yang et al. 2009).

For efficiency, the analysis update of the state estimate (Eq. 6) and the ensemble trans-

formation (Eq. 8) can be combined into a single transformation of X
′f as

Xa = Xf +X
′f
(

W
ETKF

+WETKF
)

. (11)

with W
ETKF

=
[

wETKF , . . . ,wETKF
]

. This formulation leads directly to the analysis en-

semble, without explicitly updating the state estimate by Eq. (6).
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(n x N) 

(N x N) 

(N x N) 

(n x N) 

(n x n) 
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Error-subspace basis matrix  

 

        (T subtracts ensemble mean and removes last column) 

Analysis covariance matrix 

 

“Transform matrix” (in error subspace) 

                                                                                             

Ensemble transformation 

 

Ensemble weight matrix 
 

•       is square root of        (originally Cholesky decomposition) 
•         is transformation from N-1 to N (random or deterministic) 

SEIK Filter 

b. Analysis step of the SEIK filter

The SEIK filter has been introduced by Pham et al. (1998) and was described in more

detail by Pham (2001). This review follows Nerger et al. (2006). The original separation

of the analysis step into the state update (“analysis”) and ensemble transformation (“re-

sampling”) is followed here. The SEIK filter is then explicitly re-formulated as an ensemble

square-root filter analogously to the ETKF in section 2. Quantities that are similar but not

identical to those of the ETKF are marked using a tilde. It is assumed that the forecast

ensemble is identical to that used in the ETKF.

Analysis: The computations of the analysis step update the state estimate and implicitly

update the state covariance matrix from the forecast to the analysis matrix.

In the SEIK filter, the forecast covariance matrix Pf is treated in terms of the forecast

state ensemble Xf by

Pf = LGLT (12)

with

L := Xf T, (13)

G := (m− 1)−1
(

TTT
)−1

. (14)

Here, T̃ is an m × (m − 1) matrix with full rank and zero column sums. Previous studies

have always defined matrix T̃ as

T̃ :=









I(m−1)×(m−1)

01×(m−1)









−
1

m

(

1m×(m−1)

)

(15)

where 0 represents the matrix whose elements are equal to zero and I is the identity. The

elements of the matrix 1 are equal to one. Matrix T̃ implicitly subtracts the ensemble mean

5

when the matrix L is computed. In addition, T̃ removes the last column of X
′f , thus L is

an n× (m− 1) matrix that holds the first m− 1 ensemble perturbations.

The analysis update of the state estimate is given as a combination of the columns of the

matrix L by

x̃a = xf + LwSEIK. (16)

Here, the vector wSEIK of size m− 1 is given by

wSEIK := Ã (HL)T R−1
(

yo −Hxf
)

(17)

and the transform matrix Ã of size (m− 1)× (m− 1) is defined by

Ã−1 := (N − 1)TTT+ (HL)TR−1HL. (18)

In the SEIK filter, ρ̃ with 0 < ρ̃ ≤ 1 is referred to as the “forgetting factor”. It is the inverse

of the inflation factor γ used in Eq. (5) of the ETKF. The analysis covariance matrix is given

in factorized form by

P̃a = LÃLT (19)

but does not need to be explicitly computed.

For efficiency, the term HL is typically computed as (HXf)T̃. Thus, T̃ operates on the

p×m matrix HXf , while H operates on each ensemble state.

Resampling: After the analysis step, the “resampling” of the ensemble is performed.

Here, the forecast ensemble is transformed such that it represents x̃a and P̃a. The transfor-

mation is performed according to

X̃a = X̃a +
√
m− 1LC̃ΩT . (20)

6
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be written as

X̃a = X̃a + LWSEIK (21)

with

WSEIK :=
√
N − 1C̃ΩT . (22)

In addition, the state analysis update (16) can be combined with the ensemble transformation

(21) to

X̃a = Xf + L
(

W
SEIK

+WSEIK
)

, (23)

with W
SEIK

=
[

wSEIK, . . . ,wSEIK
]

.

Equation (23) performs a transformation of the matrix L analogous to the ensemble

transformation of the ETKF (Eq. 11). Matrix L is the square root of the covariance matrix

Pf used in the SEIK filter. With this, the SEIK filter is clearly an ensemble square-root

filter.

It is particular for the SEIK filter that the matrix L has only m−1 columns, while other

filters use a square-root with m columns. Using m− 1 columns is possible because the rank

of Pf is at most m − 1. The SEIK filter utilizes this property by accounting for the fact

that the sum of each row of the perturbation matrix X
′f is zero. Thus, while the columns

of X
′f are linearly dependent, the columns of L are linearly independent if the rank of Pf

is m− 1. In this case, they build a basis of the error subspace estimated by the ensemble of

model states (for a detailed discussion of the error subspace, see Nerger et al. (2005a)). In

contrast, X
′
can be regarded as a transformation from its m-dimensional column space to

the error subspace of dimension m− 1 (see Hunt et al. 2007).

While the equations of the SEIK filter are very similar to those of the ETKF this does not
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8

(n x n) 

In previous studies, the SEIK filter was always described to use a Cholesky decomposition

of the matrix Ã−1 to obtain (C̃−1)T C̃−1 = Ã−1. However, other forms of the square-root,

like the symmetric square root used in the ETKF, could be chosen. Section ?? will test the

influence of the chosen square root on the performance of the filter. The matrix Ω is an

m×(m−1) matrix whose columns are orthonormal and orthogonal to the vector (1, . . . , 1)T .

Traditionally, Ω is described to be a random matrix with these properties. However, using

a deterministic Ω is also valid. The procedure to generate a random Ω (Pham 2001; Hoteit

2001) and a procedure for generating a deterministic variant are provided in the Appendix.

For efficiency, the matrix L can be replaced by XfT̃ (Eq. 13). Then, the matrix T̃ can

be applied from the left to smaller matrices like the weight vector wSEIK or the matrix C̃.

The original formulation of the SEIK filter used the normalization m−1 for the matrix

Pf instead of using the sample covariance matrix that is normalized by (m − 1)−1. For

consistency with other ensemble-based Kalman filters, Nerger and Gregg (2007) introduced

the use of the sample covariance matrix in SEIK, which is also used here. In the SEIK

filter, the ensemble is generated to be consistent with the normalization of Pf . Hence, the

normalization acts only as a scaling factor that influences the equations (3) and (20) as well

as the definition of G in Eq. (14).

2. SEIK as an ensemble square-root filter

To identify the SEIK filter as an ensemble square-root filter, the analysis and resampling

steps of SEIK are combined as a transformation of the square root of Pf . Equation (20) can

7
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X
′a = L WSEIK. (9)

The weight matrix WETKF is computed from the square-root C with CCT = A as

WETKF :=
√
N − 1CΛ. (10)

Here, Λ is an arbitrary orthogonal matrix of size m × m or the identity. To preserve the

ensemble mean, the vector (1, . . . , 1)T has to be an eigenvector of Λ.

When the ETKF was introduced by Bishop et al. (2001), the form of the square-root C

was not further specified. Studies about the properties of the ensemble transformation in

different square-root filters (e.g., Wang et al. 2004; Sakov and Oke 2008) have shown that

a symmetric matrix C ensures that the ensemble mean is preserved during the ensemble

transformation. The use of the symmetric square root

Csym := US−1/2UT (11)

has been proposed also for the localized version of the ETKF (LETKF, Hunt et al. 2007).

Eq. (10) can be obtained from the singular value decomposition (SVD)USV = A−1. The use

of matrix Csym from Eq. (10) provides a minimum transformation of the ensemble because

the distance of the square-root from the identity matrix is minimized in the Frobenius norm

(see Yang et al. 2009).

For efficiency, the analysis update of the state estimate (Eq. 6) and the ensemble trans-

formation (Eq. 8) can be combined into a single transformation of X
′f as

Xa = Xf +X
′f
(

W
ETKF

+WETKF
)

. (12)

with W
ETKF

=
[

wETKF , . . . ,wETKF
]

. This formulation leads directly to the analysis en-

semble, without explicitly updating the state estimate by Eq. (6).
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in ensemble 
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SEIK−sym: Transformation matrix

 

 

−0.1

−0.05

0

0.05

0.1

Transformation Matrix of SEIK/symmetric sqrt 

SEIK symmetric sqrt transformation matrices difference: SEIK−ETKF

 

 

−4

−3

−2

−1

0

1

2

3

4
x 10−3

Transformation matrices of ETKF and SEIK-sym very 
similar 
 
Largest difference for last ensemble member 

 (Experiments with Lorenz96 model: This can lead to  
 smaller ensemble variance of this member) 

Difference SEIK-ETKF 
10-3 
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SEIK depends on ensemble order 

SEIK−sym: Difference of transformation matrices

 

 

−4
−3
−2
−1
0
1
2
3
4

x 10−3

Switch last two ensemble members 

Ensemble transformation depends on order of ensemble members 
(For ETKF the difference is 10-15) 
 
Statistically fine, but not desirable! 

(Switched back last two columns 
& rows for comparison) 

10-3 
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Revised T matrix 

Identical transformations require different projection matrix for 
SEIK: 
 
 
For SEIK:  

	
T subtracts ensemble mean and drops last column 
 
➜  Dependence on order of ensemble members! 
➜  Solution:  

➜  Redefine T: Distribute last member over first N-1 columns 
➜  Also replace      by new  

 

New filter formulation: 
 Error Subspace Transform Kalman Filter (ESTKF) 

b. Analysis step of the SEIK filter

The SEIK filter has been introduced by Pham et al. (1998) and was described in more

detail by Pham (2001). This review follows Nerger et al. (2006). The original separation

of the analysis step into the state update (“analysis”) and ensemble transformation (“re-

sampling”) is followed here. The SEIK filter is then explicitly re-formulated as an ensemble

square-root filter analogously to the ETKF in section 2. Quantities that are similar but not

identical to those of the ETKF are marked using a tilde. It is assumed that the forecast

ensemble is identical to that used in the ETKF.

Analysis: The computations of the analysis step update the state estimate and implicitly

update the state covariance matrix from the forecast to the analysis matrix.

In the SEIK filter, the forecast covariance matrix Pf is treated in terms of the forecast

state ensemble Xf by

Pf = LGLT (12)

with

L := Xf T, (13)

G := (m− 1)−1
(

TTT
)−1

. (14)

Here, T̃ is an m × (m − 1) matrix with full rank and zero column sums. Previous studies

have always defined matrix T̃ as

T̃ :=









I(m−1)×(m−1)

01×(m−1)









−
1

m

(

1m×(m−1)

)

(15)

where 0 represents the matrix whose elements are equal to zero and I is the identity. The

elements of the matrix 1 are equal to one. Matrix T̃ implicitly subtracts the ensemble mean

5

transformation, it should be desirable to obtain the same transformation with the SEIK

filter. This goal is achieved by a modification of the SEIK filter that is described in this

section.

The modification of the SEIK filter is motivated by the properties of the matrix Ω.

In general, Ω is an m × (m − 1) matrix that re-generates m ensemble perturbations in

combination with an ensemble transformation matrix of size (m − 1) × (m − 1). For a

deterministic ensemble transformation, a deterministic form Ω̂ can be used whose elements

are defined by:

Ω̂i,j =































1− 1
m

1
1√
m
+1

for i = j, i < m

− 1
m

1
1√
m
+1

for i #= j, i < m

− 1√
m for i = m

(25)

Geometrically, Ω̂ is the Householder matrix associated with the vector m−1/2(1, . . . , 1)T (see

Appendix). Thus, Ω̂ projects vectors in the ensemble space spanned by Xf onto the error

subspace spanned by L. Like T̃, Ω̂ has a full rank and zero column sums. In addition, the

columns of Ω̂ are orthonormal, which is not the case for T̃. Using Ω̂, one can replace Eqns.

(12) – (14) by

Pf = LΩGΩL
T
Ω (26)

and

LΩ := XfΩ̂, (27)

GΩ := (m− 1)−1
(

Ω̂T Ω̂
)−1

= (m− 1)−1I(m−1)×(m−1) . (28)

Now, matrix Ã−1 from Eq. (18) is computed as:

Ã−1
Ω := ρ̃(m− 1)I+ (HLΩ)

TR−1HLΩ. (29)

10

13 ESTKF

Init

xa
0 ⇤ Rn (200)

Pa
0 :=

1

N � 1
L0L

T
0 , L0 ⇤ Rn⇥N�1 (201)

{xa(l)
0 , l = 1, . . . , N} (202)

Xa
0 =
⌦
xa(1)
0 , . . . ,xa(N)

0

↵
(203)

La
k = Xa

k�; � ⇤ RN⇥N�1 (204)

T̂i,j =

⇧
����⌥

����⌃

1� 1
N

1
1p
N
+1

for i = j, i < N

� 1
N

1
1p
N
+1

for i ⌅= j, i < N

� 1p
N

for i = N

(205)

xa
0 ⇥ xa

0 (206)

P̌a
0 :=

1

N � 1

N 

l=1

⇤
xa(l)
0 � xa

0

⌅⇤
xa(l)
0 � xa

0

⌅T
(207)

P̌a
0 :=

1

N � 1

⇤
Xa

k �Xa
k

⌅⇤
Xa

k �Xa
k

⌅T
(208)

Xa
0 = [xa

0, . . . ,x
a
0] (209)

Xa
0 =
�
xa
0, . . . ,x

a
0

⇥
(210)

Forecast

xf(l)
i = Mi,i�1[x

a(l)
i�1] + �(l)

i (211)
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T-matrix in SEIK and ESTKF 

  Efficient implementation as subtraction of means & last 
column 

  ETKF: improve compute performance using a matrix T 

SEIK: 

Analysis

Xf
k =
�
xf(1)
k , . . . ,xf(N)

k

✏
(76)

P̌f
k =

1

N � 1

N�

l=1

⇤
xf(l)
k � xf

k

⌅⇤
xf(l)
k � xf

k

⌅T
(77)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (78)

T :=

⇧

↵ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(79)

Ti,j =

⌥
⌦⌦⌦ 

⌦⌦⌦�

1� 1
N for i = j, i < N

� 1
N for i ⇥= j, i < N

� 1
N for i = N

(80)

P̌f
k = LkGLT

k (81)

Lk := Xf
kT , G :=

1

N � 1

�
TTT

⇥�1
(82)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (83)

xa
k = xf

k + Ǩk

⇤
yo
k �Hk

�
xf
k

✏ ⌅
(84)

xa
k = xf

k + Ǩk

⇤
yo
k �Hkx

f
k

⌅
(85)

Ǩk = LkUkL
T
kH

T
kRk

�1 (86)

P̌a
k = LkUkL

T
k (87)

Re-Init

P̌a
k = LkC

T
k�

T
k �kCkL

T
k (88)

C�1
k (C�1

k )T = U�1
k (89)

xa(l)
k = xa

k +
⇤
N � 1 LkC

T
k�

T
k,l (90)

Xa
k = Xa

k +
⇤
N � 1 LkC

T
k�

T
k (91)
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ESTKF:  
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Init

xa
0 ⇤ Rn (200)

Pa
0 :=

1

N � 1
L0L

T
0 , L0 ⇤ Rn⇥N�1 (201)

{xa(l)
0 , l = 1, . . . , N} (202)

Xa
0 =
⌦
xa(1)
0 , . . . ,xa(N)

0

↵
(203)

La
k = Xa

k�; � ⇤ RN⇥N�1 (204)

T̂i,j =

⇧
����⌥

����⌃

1� 1
N

1
1p
N
+1

for i = j, i < N

� 1
N

1
1p
N
+1

for i ⌅= j, i < N

� 1p
N

for i = N

(205)

xa
0 ⇥ xa

0 (206)

P̌a
0 :=

1

N � 1

N 

l=1

⇤
xa(l)
0 � xa

0

⌅⇤
xa(l)
0 � xa

0

⌅T
(207)

P̌a
0 :=

1

N � 1

⇤
Xa

k �Xa
k

⌅⇤
Xa

k �Xa
k

⌅T
(208)

Xa
0 = [xa

0, . . . ,x
a
0] (209)

Xa
0 =
�
xa
0, . . . ,x

a
0

⇥
(210)

Forecast

xf(l)
i = Mi,i�1[x

a(l)
i�1] + �(l)

i (211)
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ESTKF: New filter with identical transformation as ETKF 

 

New filter ESTKF – properties like ETKF: 
  Minimum transformation 
  Transformation independent of ensemble order 

 

But:  •   analysis computed in dimension N-1 
 •   direct access to error subspace 
 •   smaller condition number of A 

 

L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345 



Localization 

Lars Nerger – Practical Aspects of Ensemble-based KFs 



Localization: Why and how?   

  Combination of observations and  
model state based on estimated  
error covariance matrices 

  Finite ensemble size leads to  
significant sampling errors  

•  particularly for small covariances! 

  Remove estimated long-range correlations 

➜  Increases degrees of freedom for analysis  
(globally not locally!) 

➜  Increases size of analysis correction 

0 10 20 30 40
−2

−1

0

1

2

3

4
Example: Sampling error and localization

 

 

true
sampled
localized

0 10 10 20 20 
distance 
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 Global vs. local SEIK, N=32 (March 1993) 

  Improvement is error reduction by assimilation 

  Localization extents improvements into regions not 
improved by global SEIK 

  Regions with error increase diminished for local SEIK 

  Underestimation of errors reduced by localization 

Error reduced to 83.6% Error reduced to 31.7% 

L. Nerger et al. Ocean Dynamics 56 (2006) 634 



Localization Types 

Covariance localization 
  Modify covariances in forecast 

covariance matrix Pf	


  Element-wise product with 
correlation matrix of compact 
support 

 

Requires that Pf is computed  
(not in ETKF or SEIK) 

Observation localization 
  Modify observation error 

covariance matrix R	


  Needs distance of observation 
(achieved by local analysis or 
domain localization) 

Possible in all filter formulations 
 

E.g.: Evensen (2003), Ott et al. (2004), 
Nerger/Gregg (2007), Hunt et al. (2007) 

E.g.: Houtekamer/Mitchell (1998, 2001), 
Whitaker/Hamill (2002), Keppenne/
Rienecker (2002) 

3 EKF - all observed - simplified equations

Init

xa
0 ⇥ Rn , Pa

0 ⇥ Rn⇥n (17)

Forecast

xf
i = Mi,i�1[x

a
i�1] (18)

Pf
k = Mk,k��kP

a
k��kM

T
k,k��k + Qk (19)

Analysis

xa = xf + K
�
y � xf

⇥
(20)

xa = xf +
Pf

Pf + R

�
y � xf

⇥
(21)

Pa = (I�K)Pf (22)

K =
Pf

Pf + R
(23)

K =
Pa

R
(24)

3

Simplified analysis equation: 
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Local SEIK filter – domain & observation localization 

Local Analysis: 
  Update small regions   

(like single vertical columns) 

  Observation localizations: 
Observations weighted  
according to distance 

  Consider only observations  
with weight >0 

  State update and ensemble  
transformation fully local 

Similar to localization in LETKF (e.g. Hunt et al, 2007) 

L. Nerger et al., Ocean Dynamics 56 (2006) 634 
L. Nerger & W.W. Gregg, J. Mar. Syst. 68 (2007) 237 

S: Analysis region 
D: Corresponding data region 



 Different effect of localization methods 

T. Janjic et al., Mon. Wea. Rev. 139 (2011) 2046-2060 

Experimental result: 
  Twin experiment with simple Lorenz96 model 

  Covariance localization better than observation localization 
(Also reported by Greybush et al. (2011) with other model) 
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 Different effect of localization methods (cont.) 

Larger differences for smaller observation errors 
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Covariance vs. Observation Localization 
Some published findings: 

  Both methods are “similar” 

  Slightly smaller width required for 
observation localization 

But note for observation localization: 

  Effective localization length depends  
on errors of state and observations 

  Small observation error  
 ➜ wide localization 

  Possibly problematic: 
•  in initial transient phase  

of assimilation 
•  if large state errors are  

estimated locally 

 

P: state error variance 
R: observation error variance 
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➜  New localization function for observation localization  

A Regulated Localization Scheme
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Figure 1. Effective weighting in the Kalman gain for different observation-
error variances σ 2

R and state error variance 1. Solid: ith element of the
Kalman gain for CL (Eq. (22)). Dashed: ith element of the gain for OL
(Eq. (23)). The effective weighting is increasingly wider for observation
localization for decreasing σ 2

R .

required because of the longer effective localization length-
scale of OL. The better performance of CL might be caused by
the different shape of the effective localization functions for
comparable localization length-scales. Similarly, a different
effect of CL and OL on imbalance (figures 5 and 6 of
Greybush et al., 2011) can be attributed to the different
effective localization length-scales. In addition, the different
shapes of the effective localization functions for comparable
length-scales can lead to different levels of imbalance.

The dependence of the effective localization length of OL
on the relative size of the forecast-error variance and the
observation-error variance can also be relevant during the
initial transient phase of a data-assimilation experiment.
Typically, the initial errors of the state estimate are large.
They are reduced during the initial transient phase of the
data-assimilation sequence until they reach some asymptotic
level. In contrast, the errors of the assimilated observations
are independent of the transient phase. Frequently, the
initially estimated variance of the state is of the same
order as the observation-error variance or larger. If wOL

is identical to wCL, the assimilation with OL will start with
a significantly larger effective localization length than with

CL. Thus, observations at an intermediate distance will have
a larger influence in the analysis. However, if the correlation
function wOL has compact support, the effective localization
function reaches zero at the same distance as the prescribed
function wOL. In this case, the total number of observations
that are used in the local analysis remains constant.

During the transient phase, the effective localization
length will become shorter until it reaches an asymptotic
level. In general, one could choose the support radius for OL
such that the effective localization width is comparable to
that of CL when the asymptotic phase is reached. However,
in the numerical experiments discussed below, the initially
large effective localization length led to instabilities during
the transient phase of the assimilation process.

4.2. Regulating the localization width

To avoid a long effective localization length, one can adjust
the width of the effective localization, which depends on
the ratio of the observation variance to the forecast-state
error variance. This adjustment is achieved by the regulated
localization function derived in this section.

For the regulated localization method, the single-
observation example of the previous section is considered
again. The same effective localization length for OL and CL
can be obtained by requiring that the right-hand sides of Eqs
(22) and (23) are equal. This condition leads to the equation
for the regulated weight wOLR as a function of wCL:

wOLR = wCLσ 2
R

HPHT + σ 2
R

(
1 − wCLHPHT

HPHT + σ 2
R

)−1

. (24)

Using Eq. (24) for OL will result in identical effective
localizations of the gain for OL and CL. Further, wOLR is a
correlation function as long as wCL is a correlation function.

The regulated localization function wOLR is exemplified in
Figure 2 for three values of σ 2

R (10, 1 and 0.1). As in Figure 1,
wCL is chosen to be a Gaussian function with variance 1000.
While for σ 2

R = 10 both weight functions lie on top of each
other, wOLR narrows with decreasing σ 2

R to keep the effective
localization length of the gain constant.

Eq. (24) for the regulated OL is only exact in the case
of a single observation. In general, the exact regulated
function varies with the number of observations. Appendix
B discusses the case of two observations. The computation
of the exact regulated localization function becomes
increasingly costly for multiple observations. However, Eq.
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Figure 2. Gaussian weight function wCL and regulated weight function
wOLR for three different observation-error variances σ 2

R . The curves for wCL

and wOLR with σ 2
R = 10 lie on top of each other.

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2011)

Regulated Localization 

➜  New localization function for observation localization  
  formulated to keep effective length constant 

(exact for single observation) 
  depends on state and observation errors 
  depends on fixed localization function 
  cheap to compute for each observation 
  Only exact for single observation – works for multiple 

L. Nerger et al. QJ Royal. Meterol. Soc. 138 (2012) 802-812 
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Lorenz96 Experiment: Regulated Localization 
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  Reduced minimum rms errors 

  Increased stability region 

  Still need to test in real application 

  Description of effective localization length explains 
the findings of other studies! 

Regulated localization, N=10, R=0.5 
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Summary 

  Ensemble-based KFs not exact 

➜  But they “work”! 

  Improve methods 

➜  Least cost; least tuning; best state and error estimates 

  Study relations for improvements 

➜  Efficient analysis formulations 

➜  Efficient localization 

Thank you! 
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