Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2


Contact
Anneli.Strobel [ at ] awi.de

Abstract

Introduction: Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation.Results: For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid-base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation.Conclusion: The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid-base regulation. New set points of acid-base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and PCO2. © 2012 Strobel et al.; licensee BioMed Central Ltd.



Item Type
Article
Authors
Divisions
Programs
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Published
Eprint ID
31987
DOI https://www.doi.org/10.1186/1742-9994-9-28

Cite as
Strobel, A. , Bennecke, S. , Leo, E. , Mintenbeck, K. , Pörtner, H. O. and Mark, F. C. (2012): Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2 , Frontiers in Zoology, 9 (1), p. 28 . doi: https://www.doi.org/10.1186/1742-9994-9-28


Download
[thumbnail of Strobel2012b.pdf]
Preview
PDF
Strobel2012b.pdf

Download (693kB) | Preview
Cite this document as:

Share


Citation

Research Platforms

Campaigns
ANT > XXVII > 3


Actions
Edit Item Edit Item