Airborne lidar measurements of surface ozone depletion over Arctic sea ice


Contact
Andreas.Herber [ at ] awi.de

Abstract

<jats:p>Abstract. A differential absorption lidar (DIAL) for measurement of atmospheric ozone concentration was operated aboard the Polar 5 research aircraft in order to study the depletion of ozone over Arctic sea ice. The lidar measurements during a flight over the sea ice north of Barrow, Alaska, on 3 April 2011 found a surface boundary layer depletion of ozone over a range of 300 km. The photochemical destruction of surface level ozone was strongest at the most northern point of the flight, and steadily decreased towards land. All the observed ozone-depleted air throughout the flight occurred within 300 m of the sea ice surface. A back-trajectory analysis of the air measured throughout the flight indicated that the ozone-depleted air originated from over the ice. Air at the surface that was not depleted in ozone had originated from over land. An investigation into the altitude history of the ozone-depleted air suggests a strong inverse correlation between measured ozone concentration and the amount of time the air directly interacted with the sea ice. </jats:p>



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published
Eprint ID
33359
DOI https://www.doi.org/10.5194/acp-13-6023-2013

Cite as
Seabrook, J. , Whiteway, J. , Gray, L. , Staebler, R. and Herber, A. (2013): Airborne lidar measurements of surface ozone depletion over Arctic sea ice , Atmospheric Chemistry and Physics, 13 (12), pp. 6023-6029 . doi: https://www.doi.org/10.5194/acp-13-6023-2013


Download
[thumbnail of Seabrook-etal_ACP-2013.pdf]
Preview
PDF
Seabrook-etal_ACP-2013.pdf

Download (2MB) | Preview
Cite this document as:

Share


Citation

Research Platforms

Campaigns
N/A


Actions
Edit Item Edit Item