A Global Model for the Diapycnal Diffusivity Induced by Internal Gravity Waves


Contact
Dirk.Olbers [ at ] awi.de

Abstract

<jats:title>Abstract</jats:title> <jats:p>An energetically consistent model for the diapycnal diffusivity induced by breaking of internal gravity waves is proposed and tested in local and global settings. The model [Internal Wave Dissipation, Energy and Mixing (IDEMIX)] is based on the spectral radiation balance of the wave field, reduced by integration over the wavenumber space, which yields a set of balances for energy density variables in physical space. A further simplification results in a single partial differential equation for the total energy density of the wave field. The flux of energy to high vertical wavenumbers is parameterized by a functional derived from the wave–wave scattering integral of resonant wave triad interactions, which also forms the basis for estimates of dissipation rates and related diffusivities of ADCP and hydrography fine-structure data. In the current version of IDEMIX, the wave energy is forced by wind-driven near-inertial motions and baroclinic tides, radiating waves from the respective boundary layers at the surface and the bottom into the ocean interior. The model predicts plausible magnitudes and three-dimensional structures of internal wave energy, dissipation rates, and diapycnal diffusivities in rough agreement to observational estimates. IDEMIX is ready for use as a mixing module in ocean circulation models and can be extended with more spectral components.</jats:p>



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published
Eprint ID
33541
DOI https://www.doi.org/10.1175/jpo-d-12-0207.1

Cite as
Olbers, D. and Eden, C. (2013): A Global Model for the Diapycnal Diffusivity Induced by Internal Gravity Waves , Journal of Physical Oceanography, 43 (8), pp. 1759-1779 . doi: https://www.doi.org/10.1175/jpo-d-12-0207.1


Share


Citation

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item