Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation


Contact
Xu.Zhang [ at ] awi.de

Abstract

<jats:p>Abstract. The last deglaciation is one of the best constrained global-scale climate changes documented by climate archives. Nevertheless, understanding of the underlying dynamics is still limited, especially with respect to abrupt climate shifts and associated changes in the Atlantic meridional overturning circulation (AMOC) during glacial and deglacial periods. A fundamental issue is how to obtain an appropriate climate state at the Last Glacial Maximum (LGM, 21 000 yr before present, 21 ka BP) that can be used as an initial condition for deglaciation. With the aid of a comprehensive climate model, we found that initial ocean states play an important role on the equilibrium timescale of the simulated glacial ocean. Independent of the initialization, the climatological surface characteristics are similar and quasi-stationary, even when trends in the deep ocean are still significant, which provides an explanation for the large spread of simulated LGM ocean states among the Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2) models. Accordingly, we emphasize that caution must be taken when alleged quasi-stationary states, inferred on the basis of surface properties, are used as a reference for both model inter-comparison and data model comparison. The simulated ocean state with the most realistic AMOC is characterized by a pronounced vertical stratification, in line with reconstructions. Hosing experiments further suggest that the response of the glacial ocean is dependent on the ocean background state, i.e. only the state with robust stratification shows an overshoot behavior in the North Atlantic. We propose that the salinity stratification represents a key control on the AMOC pattern and its transient response to perturbations. Furthermore, additional experiments suggest that the stratified deep ocean formed prior to the LGM during a time of minimum obliquity (~ 27 ka BP). This indicates that changes in the glacial deep ocean already occur before the last deglaciation. In combination, these findings represent a new paradigm for the LGM and the last deglaciation, which challenges the conventional evaluation of glacial and deglacial AMOC changes based on an ocean state derived from 21 ka BP boundary conditions. </jats:p>



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Research Networks
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Published
Eprint ID
34224
DOI https://www.doi.org/10.5194/cp-9-2319-2013

Cite as
Zhang, X. , Lohmann, G. , Knorr, G. and Xu, X. (2013): Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation , Climate of the Past, 9 (5), pp. 2319-2333 . doi: https://www.doi.org/10.5194/cp-9-2319-2013


Download
[thumbnail of cp-9-2319-2013.pdf]
Preview
PDF
cp-9-2319-2013.pdf

Download (4MB) | Preview
Cite this document as:

Share


Citation

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item