

Challenges and prospects of global highresolution climate modelling

Thomas Jung

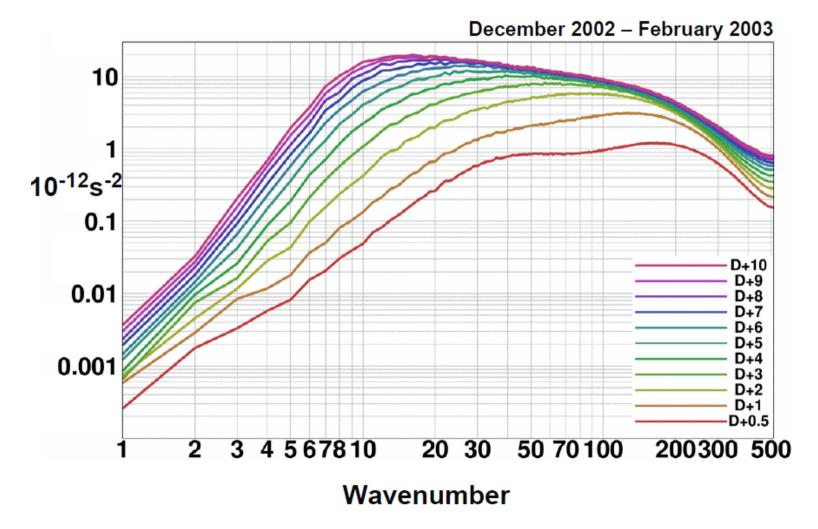
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Co-chair, Arctic programme of the European Climate Research Alliance (ECRA)

Resolution of CMIP3-5 models

Table 1 Reanalysis and model names and specifications

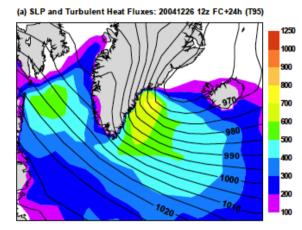
Official names	Atmosphere		Ocean		References	
	Grids (°)	Levels	Y, X points	Levels		
R-2	1.88 × 1.875	28 L			Kanamitsu et al. (2002)	
ERA-40	2.50×2.5	60 L			Uppala et al. (2005)	
ERA-Int	1.50×1.5	60 L			Dee et al. (2011)	
ACCESS1.0	1.88×1.25	38 L	300×360	50 L	1	
BCC-CSM-1	2.81×2.8125	26 L	232×360	40 L	Wu et al. (2010)	
CANCM4	2.81×2.8125	35 L	192×256	40 L	2	
CCSM4	0.94×1.25	26 L	320×384	60 L	Gent et al. (2011)	
CCSM3	1.40×1.4	26 L	395 × 384	40 L	Collins et al. (2006)	
CNRM-CM5	1.40×1.4	31 L	292×362	42 L	Voldoire et al. (2012)	
CNRM-CM3	2.80×2.8	45 L	170×180	31 L	Douville et al. (2002)	
FGOALS-g2	2.80×2.8	26 L	196 × 360	60 L	Zhang and Yu (2011)	
FGOALS1.0g	2.80×2.8	26 L	170×360	33 L	Yu et al. (2011)	
FGOALS-s2	1.60×2.8	26 L	196 × 360	60 L	3	
GISS-E2-H	2.00×2.5	40 L	180×360	26 L	Schmidt et al. (2006)	
GISS-EH	4.00 × 5	17 L	111×180	16 L	4	
GISS-E2-R	2.00×2.5	40 L	180×288	32 L	Schmidt et al. (2006)	
HadCM3	2.50×3.75	19 L	144×288	20 L	Johns et al. (2006)	
UKMO-HadCM3	2.50 × 3.75	19 L	143×288	20 L	Gordon et al. (2000)	
HadGEM2-CC	1.25×1.875	38 L	216×360	40 L	Collins et al. (2008)	
UKMO-HadGEM1	1.25×1.875	38 L	216×360	40 L	Johns et al. (2006)	
INM-CM4	1.50×2	21 L	360 × 360	40 L	Volodin et al. (2010)	
INM-CM3.0	4.00 × 5	21 L	85×180	33 L	Diansky and Volodin (2002)	
IPSL-CM5A-LR	1.88×3.75	39 L	149×182	31 L	Dufresne et al. (2012)	
IPSL-CM4	2.50 × 3.75	19 L	149×180	31 L	Marti et al. (2010)	
MIROC4h	0.56×0.56	56 L	$912 \times 1,280$	47 L	Mochizuki et al. (2012)	
MIROC5	1.40×1.4	40 L	224×256	50 L	Mochizuki et al. (2012)	
MIROC3.2	2.80×2.8	20 L	192×256	44 L	Mochizuki et al. (2010)	
MIROC-ESM	2.80×2.8	80 L	256×192	44 L	Watanabe et al. (2011)	
MIROC-ESM-CHEM	2.80×2.8	80 L	256×192	44 L	Watanabe et al. (2011)	
MPI-ESM-LR	1.88×1.875	47 L	220×256	40 L	Giorgetta et al. (2012)	
ECHAM5/MPI-OM	1.88×1.875	32 L	180×360	40 L	Roeckner et al. (2006)	
MRI-CGCM3	1.13×1.125	48 L	368 × 360	51 L	5	
MRI-GCM2	2.80×2.8	30 L	111×180	23 L	Yukimoto et al. (2000)	
NOR-ESM1-M	1.88×2.5	26 L	384×320	53 L	Seland et al. (2008)	

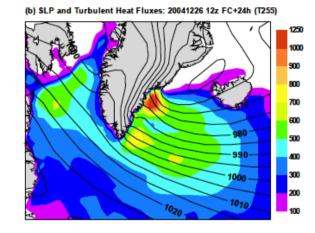
Rows in bold refer to CMIP5 models; those in italics refer to the CMIP3 models that are aligned with the CMIP5 model above



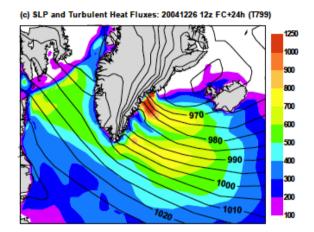
> CORDEX community:

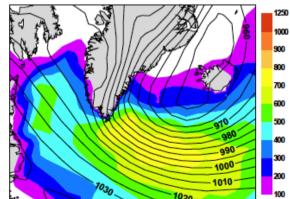
- Resolution of CMIP5 models too coarse to represent important small-scale features such as complex topography or coastlines
- Global climate modelling community:
 - Accurately resolving meso-scale phenomena → dramatically improved fidelity of the models (mean, variability and extremes)
 - Some of the long-standing model problems can be alleviated

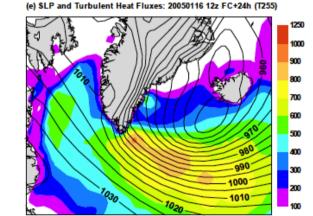

Spectra of mean-square 850hPa vorticity errors


Example: Greenland tip jet

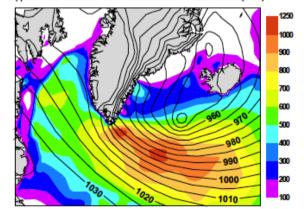
ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG


Resolution: 180km


Resolution: 80km



Resolution: 25km



(d) SLP and Turbulent Heat Fluxes: 20050116 12z FC+24h (T95)

(f) SLP and Turbulent Heat Fluxes: 20050116 12z FC+24h (T799)

Jung and Rhines (2007), J. Atmos. Sci.

- One of the most comprehensive attempts so far to explore the role of horizontal resolution in climate modelling
- International project: 30 people, in 6 groups from 3 continents
- Two state-of-the-art global AGCMs at the highest possible spatial resolutions
- > Dedicated supercomputer at NICS:
 - ➤ Cray XT-4 Athena (≈20.000 cores)
 - Access from October 2009 March 2010
 - > A total of 80 MCPUh
 - > A total of \approx 1.2 PB of data (\approx 1/3 of the total CMIP5 archive)

IFS experiments	T159	T511	T1279	T2047
Resolution (km)	125	40	15	10
Radiation grid	T63	T159	T511	T639
Time step (min)	60	15	10	7.5
3-month ¹	2001-2009	_	2001-2009	_
13-months ²	1960-2007	1960-2007	1960-2007	1989-2007
AMIP ³	1960-2007	—	1960-2007	—
Time slice ⁴	2070-2117	—	2070-2117	—
Seasonal forecasts ⁵	Sel. cases	—	Sel. cases	_

¹ Forecasts started on 21 May covering June-August.

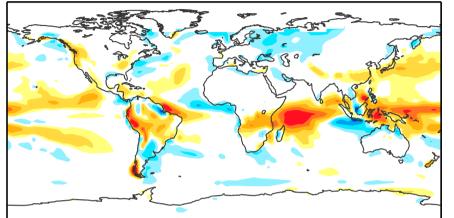
² Forecasts started on 1 November.

³ Forecast started on 1 November 1960.

⁴ More details below.

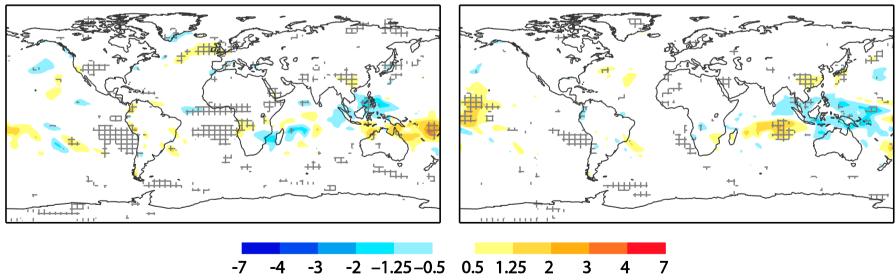
⁵ 10 member lagged ensemble (see below).

NICAM experiments 8 km 8 summers 21 May-30 Aug 2001-2009

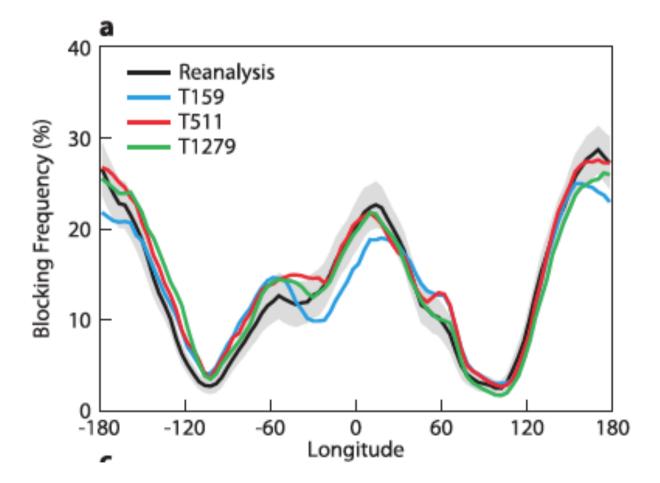

 Suspects (causes): Convection Orographic effects Physical processes in extratropical cyclones Fronts PV filaments 	 "Climate" biases (symptoms): Westerly wind bias Euro-Atlantic blocking Storm tracks Madden-Julian Oscillation Indian Summer Monsoon Tropical hydrological cycle 				
10 15 40 125					

Spatial scale (km)

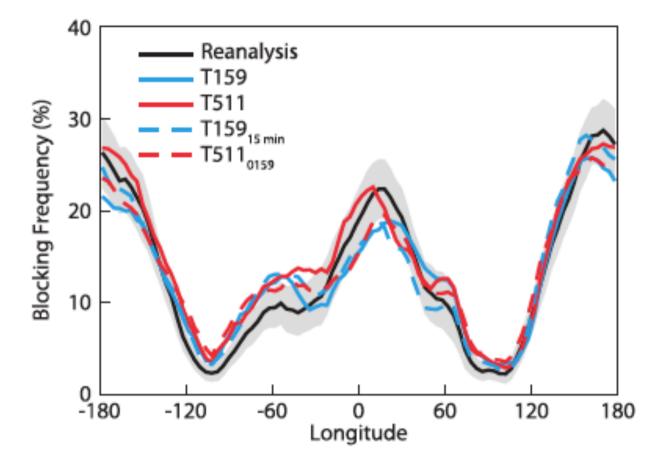
Precipitation

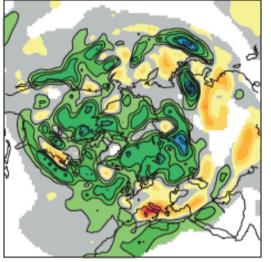

a T159 – GPCP

C T1279 – T511

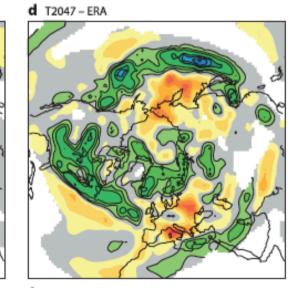

d T2047 – T1279

b T511 – T159



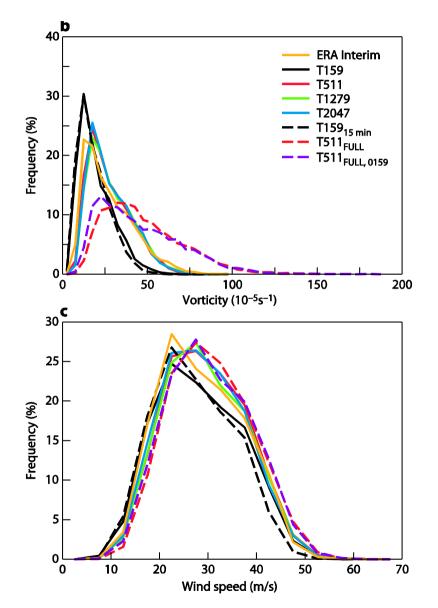


Extratropical cyclones

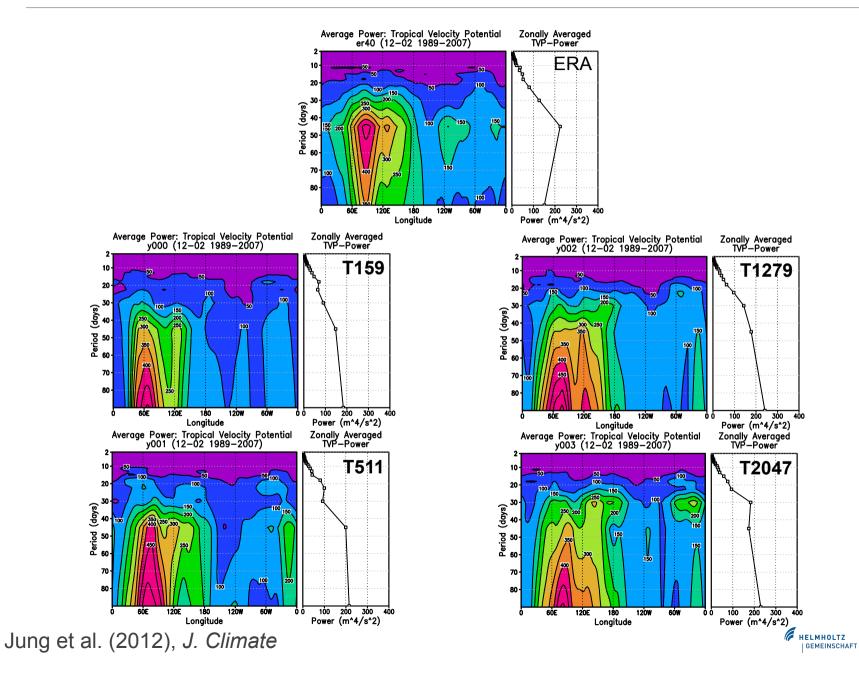


a T159 – ERA

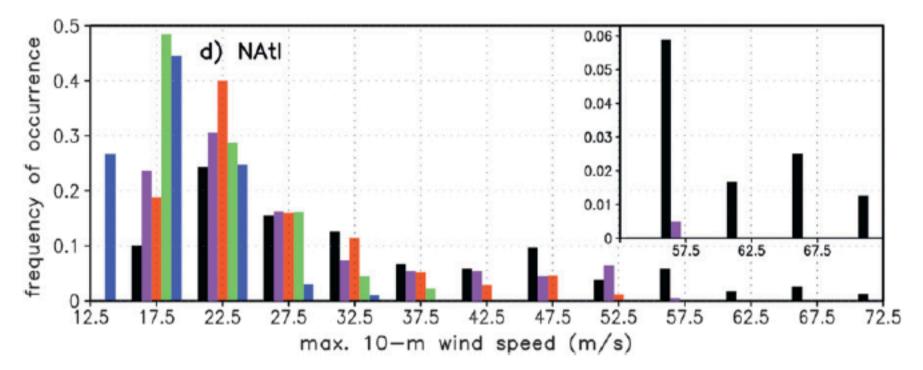
b T511 - ERA

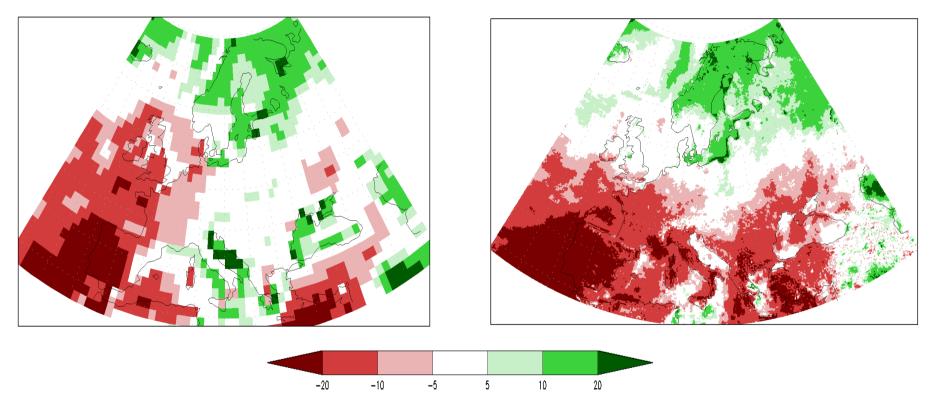

C T1279 - ERA

- > Min. lifetime \geq 2 days
- ➢ Min. migration distance ≥ 2000km
- Data truncated to T159/N80



Madden-Julian Oscillation




FIG. 4. Distribution of maximum attained 10-m wind speed in the (a) Northern Hemisphere, (b) northwest Pacific, (c) northeast Pacific, and (d) North Atlantic TCs from the IBTrACS data (black bar), IFS T2047 (purple bar), T1279 (red bar), T511 (green bar), and T159 (blue bar) for MJJASON of 1990–2008. Inset plots show the tail of the distributions.

European precipitation change (Apr-Oct)

T159 (125-km)

T1279 (16-km)

Kinter et al. (2013), Bull. Amer. Meteor. Soc.

HELMHOLTZ

Summary

- Project Athena very successful from a computational point of view
- Example of successful international collaboration
- > Scientific key results:
 - Clear improvement in simulating small-scale features (e.g. tropical cyclones, topographically modified winds)
 - Benefit for large-scale aspects less obvious from Athena results

 Some improvements (eg tropical precipitation, Euro-Atlantic blocking)
 Improvements primarily when going from 120 to 40 km
 - Mostly neutral (eg MJO and Indian Summer Monsoon)
 - Some deteriorations (eg QBO and stratospheric temperatures)
 - Time slice experiments: Similar large-scale response but large regional differences

- Resolution studies with global models would benefit from a more systematic approach
 - international coordination
 - Define a suite of experiments at various resolutions (from NWP to projections)
- Close collaboration with model developers (grey zone issues, parametrization tuning)
- More research needed to understand the inverse energy cascade in the 10-500 km scale range
- More diagnostic studies required to evaluate meso-scale phenomena in Athena-type experiments
- Access to full data set required-ideally with processing capabilities

