Evaluation of the MACC operational forecast system – potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere


Contact
Rolf.Weller [ at ] awi.de

Abstract

<jats:p>Abstract. The Monitoring Atmospheric Composition and Climate (MACC) project represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu/), which became fully operational during 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5-day forecasts of atmospheric composition fields. It is the only assimilation system worldwide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases covering the period between 2009 and 2012. A validation was performed based on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) surface observations from the Global Atmosphere Watch (GAW) network, the O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and, furthermore, NO2 tropospheric columns, as well as CO total columns, derived from satellite sensors. The MACC system proved capable of reproducing reactive gas concentrations with consistent quality; however, with a seasonally dependent bias compared to surface and satellite observations – for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the year, with monthly modified normalised mean biases (MNMBs) ranging between −30 and 30 % at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterisation. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at their highest level, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range from values between −110 and 40 % for NO2 and at most −20 % for CO, over the investigated regions. The underestimation is likely to result from a combination of errors concerning the dry deposition parameterisation and certain limitations in the current emission inventories, together with an insufficiently established seasonality in the emissions. </jats:p>



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Research Networks
Publication Status
Published
Eprint ID
37478
DOI https://www.doi.org/10.5194/acp-15-14005-2015

Cite as
Wagner, A. , Blechschmidt, A. M. , Bouarar, I. , Brunke, E. G. , Clerbaux, C. , Cupeiro, M. , Cristofanelli, P. , Eskes, H. , Flemming, J. , Flentje, H. , George, M. , Gilge, S. , Hilboll, A. , Inness, A. , Kapsomenakis, J. , Richter, A. , Ries, L. , Spangl, W. , Stein, O. , Weller, R. and Zerefos, C. (2015): Evaluation of the MACC operational forecast system – potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere , Atmospheric Chemistry and Physics, 15 (24), pp. 14005-14030 . doi: https://www.doi.org/10.5194/acp-15-14005-2015


Download
[thumbnail of acp-15-14005-2015.pdf]
Preview
PDF
acp-15-14005-2015.pdf

Download (4MB) | Preview
Cite this document as:

Share


Citation

Geographical region
N/A

Research Platforms

Campaigns
N/A


Actions
Edit Item Edit Item