Representation of organic complexation in biogeochemical models and its effect on the cycling of iron

or: from fudge factor towards mechanistic understanding

The A. Mechanized code for Henrich L. and L. in the control

${\rm Christoph~Völker}^1$, Alessandro Tagliabue 2

¹ Alfred Wegener Institute for Polar and Marine Research ²University of Liverpool

SCOR WG 139 meeting, 11 april 2015

A DISAPPOINTMENT

unlike speciation modellers, global biogeochemical modellers are not interested in ligands *per se*, their properties, intricacies of titrations etc. at all..

instead they are interested in ligands as a means to get the iron cycle right, i.e. to limit unrealistic scavenging of iron

A DISAPPOINTMENT

unlike speciation modellers, global biogeochemical modellers are not interested in ligands *per se*, their properties, intricacies of titrations etc. at all..

instead they are interested in ligands as a means to get the iron cycle right, i.e. to limit unrealistic scavenging of iron

this begins already with the first global model of the iron cycle, Archer & Johnson (2000).

ARCHER & JOHNSON (2000)

a no ligand, 350 m depth b no ligand, 2500 m depth $_{c}$ L = 0.6 nM, 350 m depth $d L = 0.6$ nM, 2500 m depth

- only iron source: dust deposition
- scavenging = Fe'/τ
- no ligand case: $\tau = 650$ years
- ligand = 0.6 nM case: $\tau = 100$ years

conclusion back then: ligands prevent unrealistic inter-basin gradient

ALONG CAME GEOTRACES

iron concentration across the South
Atlantic (Noble et al., 2012)

iron concentration along a section through the Western Atlantic (Rijkenberg et al., 2014)

some insights since 2000:

- deep iron distribution less homogenous than thought before
- often maximum in oxygen minimum zones
- sediments and hydrothermalism are inportant iron sources these features are not reproduced well with constant ligand concentration

but still, the assumption of a constant ligand concentration is made in almost all global biogeochemical models

LINKING L TO DOC: TAGLIABUE & VÖLKER (2011)

Ligands at 100 m depth, calculated from DOC following Wagener et al. (2008)

motivation: Wagener et al. (2008): correlation between L and DOC in mediterranean waters

model assumptions:

• $DOC = DOC_{refr}$ (precribed, 40) nM) + DOC*sl* (modelled)

$$
\bullet \ \mathbf{L}_1 = \mathbf{DOC}_{sl} \cdot 0.06
$$

$$
\bullet \ L_2 = 0.4 \ nM + DOC_{sl} \cdot 0.03
$$

LINKING L TO AOU: MISUMI & AL. (2013)

soluble ligands from Wu et al. (2000), and from assuming a linear relationship with AOU

motivation: W₁₁ et al. 2000: ligands are elevated in oxygen minimum zones

model assumption:

- $L_2 = \alpha + \beta \cdot \text{AOU}$
- several combinations of α and β tested
- DOC taken from climatology, not from the model
- one run combining their AOU and our DOC dependency

LINKING L TO AOU: MISUMI & AL. (2013)

modelled dFe between 200 m and 1000 m depth

model was mainly evaluated by comparing modeled with observed Fe; no real ligand validation

 \rightarrow keep on measuring ligands! we need a larger database

LINKING L TO AOU: MISUMI & AL. (2013)

observed vs. modelled dFe below 200 m

best fit to dFe observations by making L dependent on both AOU and DOC

but: not a causal relation, can we trust it for other climate states?

 \rightarrow we need a prognostic model for ligands!

WHERE DO FE-BINDING LIGANDS COME FROM? WHAT IS THEIR FATE?

two main types of ligands proposed: degradation products, such as porphyrins, and siderophores, produced by bacteria under iron limitation production / degradation pathways probably as varied as ligand

origins

IDEALIZED LIGAND MODEL

Fig. 5. Idealised cycle for ligands L_1 and L_2 in the ocean.

summarized by Hunter and Boyd 2007 as a simple model for iron-binding ligands:

two classes of ligands, one produced by degradation in the deep ocean, more refractory, another one in the surface by bacteria, more labile

PROGNOSTIC MODELLING: YE ET AL. (2009)

ligand sources: remineralization, DOC production ligand sinks: bacterial & photochemical degradation, iron uptake

but: local study in NE tropical Atlantic only

A SLIGHTLY SIMPLER MODEL, BUT GLOBAL

only one ligand two sources: POC degradation + DOC excretion by phytoplankton and zooplankton four sinks: bacterial degradation (with nonconstant time-scale τ) + photochemical destruction + iron uptake + colloidal aggregation

$$
\frac{\partial}{\partial t}L + \mathbf{U} \cdot \nabla L = a(E_{DON} + rD) - 1/\tau L - \kappa I(z, t)L - \begin{cases} \alpha U_{Fe} & \text{if } L > 0 \\ 0 & \text{if } L \le 0 \end{cases}
$$

several unknown parameters: ligand:carbon ratio in fresh DOC *a*, bacterial degradation timescale τ photochemical destruction rate κ , fraction of ligand destroyed in iron uptake α , colloidal fraction of ligand *p*

HELP!

a model elephant

"With five parameters, we can build an elephant" (Dirk Olbers)

can we infer some parameter values from lab studies or in situ observations?

LIGAND:CARBON RATIO

- Wagener et al. (2008): ligand:DOC correlation in mediterranean surface waters: ligand:DOC $\approx 10^{-4}$ mol mol⁻¹
- Schlosser and Croot (2009): ligand: PO₄ correlation below mixed layer in mauritanian upwelling: ligand:PO₄ $\approx 10^{-3}$ mol mol⁻¹
- Kuma et al. (1998) similar ligand:PO⁴ correlation, but in deep North Pacific, with 10-fold smaller slope: ligand:PO₄ $\approx 10^{-4}$ mol $mol⁻¹$
- Boyd et al. (2010): Ligand:Fe increase rate in POC incubation \approx 3 mol mol⁻¹

Using Redfield ratios C:N:P:Fe this translates into a ligand:C range $10^{-4} < a < 10^{-6}$ mol mol⁻¹ but more likely $10^{-4} \leq a < 10^{-5}$ mol mol $^{-1}$, lower values (Kuma et al., 1998) probably biased by ligand degradation in 'old' waters

LIGAND DEGRADATION TIME-SCALE BELOW 100 M

- Total POC export over 100 m \approx 10 PgC yr $^{-1}$, most of that remineralized in water column
- assume a ligand:carbon ratio of 10^{-5} mol mol⁻¹
- Estimate average L-concentration in deep ocean at 1 nM

Assuming that all ligands produced below 100 m are 'eaten' there, we arrive at an average life-time of ligands of 200 yr (and shorter if the ligand:carbon ratio is higher)

Do we have similar estimates for the photochemical degradation of ligands? for the fate of ligands when ligand-bound iron is taken up?

THE RESULTING LIGAND DISTRIBUTION

Völker and Tagliabue, 2014

some assumptions made: "ligand continuum": some fractions of ligand degraded much faster than other fractions higher degradation rate when concentration of ligand is high a fraction of the ligand aggregates with sinking particles

comparison with data: $bias = -0.1$ nM, $RMSE = 1.4$ nM

THE EFFECT ON MODELED IRON

CoFeMUG. Cruise

dFe along the CoFeMUG cruise; lower left constant ligands; lower right variable ligands

SOME CONCLUSIONS

- a model for global ligand distribution based on conceptual understanding
- still some ad-hoc parameterizations that mask lack of knowledge on processes, such as the "ligand continuum" approach
- some ligand sources missing: rivers, sediments, hydrothermal?
- comparison to ligand data base o.k., room for improvement; larger data base will help
- **•** improvements in the description of the iron distribution; but re-assessment of iron loss processes needed (→ Phil's talk)
- • more sensitivity studies needed! $(\rightarrow$ Ying's talk!)