Isotope Studies of Hydrogen and Oxygen in Ground Ice - Experiences with the Equilibration Technique
Equilibration technique suitable for a large amount of samples is described for hydrogen and oxygen isotope analyses of ground ice, especially ice wedges, including the sampling strategy and the analytical procedure as well as the calibration of the Finnigan MAT Delta-S mass spectrometer in June, 1999. Since for future analyses of ice wedges, a higher sampling resolution with limited sample volume is required, the limit of the equilibration technique for small water sample sizes of between 0.05 and 5 ml was checked. For water samples smaller than 1 ml, corresponding to a molar ratio [H2O]/[H2] of smaller than 0.994, a balance correction has to be applied. The experimental errors due to partial evaporation during evacuation, the balance calculation of the isotope equilibrium process, the linearity as well as memory effects of the mass spectrometer for samples with large differences in δ18O and δD are tackled in this paper. In the polar regions of Northern Siberia without Late Pleistocene and Holocene glaciation, ground ice is used as an archive for paleoclimate studies. First results of stable isotope measurements on ice wedges clearly show a shift towards heavier isotopes and thus warmer winter temperatures as well as a change in the source of the precipitation between Late Pleistocene and Holocene. These results indicate the high potential of ground ice for paleoclimate studies.
AWI Organizations > Geosciences > Permafrost Research