Permafrost regions vulnerable to thaw: A Landsat, GeoEye, and DEM-based analysis of Yedoma relief in the Kolyma Lowland, East Siberia

CRYO-115

Aleksandra Veremeeva^{1*}, Nagezhda Glushkova², Frank Günther³

¹Institute of Physicochemical and Biological Problems of Soil Science RAS, Pushchino, Russia ²Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia ³Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany * Corresponding author email address: averemeeva@gmail.com

Background

The Yedoma deposits are widespread on the lowlands of North-East Siberia, Alaska and Yukon territories. This sediments formed in late Pleistocene and are mostly silty ice rich deposits with large polygonal ice wedges (Shirrmeister et al., 2013) and buried well-preserved organic matter (Strauss et al., 2013). Climate warming in the end of Pleistocene contrubuted to the activation of thermokarst processes and thawing Yedoma deposits, which were most active in early Holocene (Kaplina, 2009). The remnants of the Yedoma deposits due to the high ice content are vulnerable in the modern warming climate. The dynamic of thermokarst lakes can indicate the reaction of the Yedoma landscapes to the climate changes.

Key questions:

1.What is the distribution of the Yedoma deposits area and how strong it was affected by thermokarst in Holocene?

Methodology

Mapping of Yedoma deposits

The existing maps due to their small scale can't show the actual area of Yedoma deposits which are significantly reworked by thermokarst (fig.3).

edoma deposits: a - Yedoma distribution map by Konishchev (2009); b - Quaternary deposits map of 1:1000000 scale (State Geological map...,2000); c - Landsat image

For the mapping Quaternary deposits the Landsat images were used (fig.4). Allocation of deposits were done concidering the following characteristics:

1). spectral properties of satellite image;

- 2.What was the regularities of the thermokarst development?
- 3. What is the modern trend of the thermokarst lake area changes?

4. What is the difference between conditions of early Holocene and modern time for the thermokarst development?

Study region

Kolyma lowland tundra occupy about 45000 km² area and is located within the continios permafrost zone.

 Maximum heights are 70-90 m in the southern part gradually decreasing towards seashore.

• The mean annual air temperature is -15^oC... -13.5^oC. Mean annual temperature of permafrost varies from -11^oC to -7^oC. For the period 1979-2009 in the Yedoma deposits the mean temperature is increased by 0.05°C per year (Kholodov et al., 2012). Depths of active layer vary from 20 to 70 sm depending of landscape conditions.

2). morphology; 3). absolute heights from topomap of 1:200000

> Fig. 4. Yedoma deposits mapping (red contour) based on the Landsat images (a) and topomap of 1:200000 scale (b).

4). the boudaries of the Quaternary deposits from geological map of 1:1000000 scale.

The regularities of thermokarst development were revealed by DEM-analysis.

Allocating of the thermokarst lake area for Kolyma lowland tundra

Thermokarst lakes area coverage was quantified based on seven Landsat 8 images for the time period 2013-2014 from August till September. Atmospheric correction of each image was done for radiometric normalization across the dataset. An increase in ground resolution of the 30m multi-spectral data was achieved through resolution merge with the panchromatic channel to 15m pixel size. Subsequent mosaicking, classification and raster to vector conversion was done.

Modern thermokarst lake changes

1). The analysis of thermokarst lake changes were done for the key site Oler with the area of 2804 km² (fig.2) based on comparison of CORONA (21.07.1965) and Landsat (24.08.2014) images.

2). For the lake Bolshoy Oler the comparison of time series of Landsat images from 1999 to 2015 were done. 3). The aerial photography with resolution of 0,8 m (30.06.1972) and GeoEye images (26.09.2009 and 13.07.2013) with the resolution of 0,5 m for the detecting ponds changes of the bogged Yedoma surface were used.

4). The analysis of the summer air temperatures and precipitations of the weather stations Andrushkino and Chersky were done.

b b

Image data

The Yedoma deposits preserved

Results

scale;

Modern thermokast lake dynamic

Thermokarst lake changes for the key site Oler from 1965 tp 2014

Fig. 5. Quaternary deposits map constructed by Landsat images.

Qaternary deposits area

Quaternary deposits	Area, km ² (%)
Yedoma	6923 (16)
Alas comples	32175 (72)
Alluvial	4151 (9)
Alluvial-marine	680 (2)
Marine	476 (1)
All area	44406 (100)

Lakes area changes

	All lakes		
Area, km ² (relative to the 1965, %)	589 (100)	549 (93)	-40 (-7)
Limnicity, %	21	19,5	-1,5
Lakes number	1626	1559	-66
	Decreasing lakes		
Area, km ² (relative to the 1965, %)	286 (100)	231 (81)	-55 (-19)
Ratio of the decreasing lakes area to the all area, %	48,5	42,3	-6,2
Lakes number	1147	1052	-95
	Increasing lakes		
Area, km ² (relative to the 1965, %)	294 (100)	309 (105)	+15 (+5)
Ratio of the decreasing lakes area to the all area, %	49,8	56,2	+6,4
Lakes number	408	452	+29

Dynamic of the Bolshoy Oler lake area

Ponds dynamic on the cape Maly Chukochy

Fig. 6. The Yedoma deposits distribution in comparison with DEM (a) and average surface slopes map (b).

The analysis of the Yedoma distribution in comparison with DEM shows that mostly Yedoma preserved on the relative elevated areas with the highest value of average surface slopes. The thermokarst developed on the relative lowest flat areas of the study region.

Bolshoy Oler lake area dynamic: a - CORONA (1965); b - Landsat (2015); c - most significant changes of lake area from 1999 to 2015 revealed from Landsat.

Bolshoy Oler lake area changes in com parison with summer air temperature (a) and precipitations (b) of the weather station Andrushkino.

Summer air temperatures (b) and precipitations (a) from 1965 to 2015 of the weather station Chersky.

Summer air temperatures and precipitations for the years of the aerial photo and GeoEye images data, weather station Chereky

	Air temperature, °C	Precipitations, mm
72	No data	0,4
72	No data	26,6
1972	No data	20,3
		Sum 47,3
09	8,7	4,4
)9	10,4	18,3

Ponds dynamic of the bogged Yedoma surface for the site cape Maly Chukochy: the comparison of the aerial photo and GeoEye images.

August, 2009	8,8	32,1	
	Average value 9,3	Sum 54,8	
June, 2013	11,1	14	
July, 2013	13,4	36,3	
August, 2013	9,1	39,5	
	Average value 11,2	Sum 89,8	

Distribution of the bogged Yedoma surface allocated with using Landsat images.

Conclusions

Analysis of Yedoma distribution shows that about 80% of the initial Yedoma plains was reworked by thermokarst processes in Holocene. Modern relief was formed by 10000-11000 years BP (Kaplina, 2009) in the climate conditions with summer temperatures higher on 5°C then modern (Lozhkin et al., 1975). The Yedoma preserved on the areas with less favorable conditions for thermokarst.

Most part of thermokarts lakes formed in early Holocene was drained. The modern thermokarst lakes exist in alas depressions and limnicity of the study area is about 13%. Only a few initial thermokarst lakes located within the Yedoma deposits were revealed.

Analysis of meteodata shows increasing trend of summer air temperatures and precipitations. In modern climate conditions the general trend of decreasing thermokarst lake area were observed. The decreasing occurs for small, meduim and some large lakes in the elevated sites and the increasing is more typical for the large lakes in the relative lowest relief position. Analysis of the Oler Bolshoy lake dynamic in comparison with meteodata doesn't show the correlation. For the bogged Yedoma surface which cover the 10 % of the all Yedoma area the increasing of ponds area were revealed. This sites can be good object for monitoring to indicate the reaction of the Yedoma landscapes to the modern climate changes.

The Landsat images can be used for the study of Yedoma deposits distribution and thermokarst development in Holocene and this is necessary basis for the analysis of the modern thermokarst lake dynamic.

Acknowledgements

We are greatful to Stas Gubin, Guido Grosse and Ivan Zolnikov for their help and support of this study. This research was funded by the Russian Scientific Fund (grant No 14-05-31368).

References

Günther, F., Overduin, P. P., Yakshina, I. A., Opel, T., Baranskaya, A. V. and Grigoriev, M. N. 2015. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction, The Cryosphere, 9 (1), pp. 151-178. doi: 10.5194/tc-9-151-2015. Kaplina T.V. 2009. Alas complex of Northern Yakutia. Kriosfera Zemli (Earth Cryosphere), 13, 3–17, 2009 (in Russian).

Kholodov, A.L., Gilichinsky, D., Ostroumov V., at al. (2012). Regional and Local Variability of Modern Natural Changes in Permafrost Temperature in the Yakutia Coastal Lowlands, Northeastern Siberia. In proceedings of Tenth International Conference on Permafrost.Vol. 1, pp. 203-209.

Konishchev V.N. 2009. Climate warming and permafrost. Geography, Environment, Sustainability. Vol. 1, No 2. P. 4-19.

Lozhkin A.V., Prokhorova T.P., Paryj V.P. 1975. Raiocarbon datings and palynological characteristic of the alas complex deposits of the Kolyma lowland. The reports of the USSR Academy of Sciences. V 224, № 6, p. 1395-1398. Schirrmeister L., Froese D., Tumskoy V., Grosse G. and Wetterich S. 2013. Yedoma: Late Pleistocene Ice-Rich Syngenetic Permafrost of Beringia. In: Elias S.A. (ed.) The Encyclopedia of Quaternary Science, vol. 3, pp. 542-552. Amsterdam: Elsevier.

State Geological map of Quaternary Deposits. Map R-(55)-57, scale 1:1,000,000, with explanatory text. 2000. VSEGEI. Saint-Petersburg. (in Russian).

Strauss J., Schirrmeister L., Grosse G. et al. 2013. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett., 40, p. 6165-6170.