

Master Track RV Heincke HE465

Data Processing Report

Contents

1	Introduction	1
2	Workflow	1
3	Cruise details	2
4	Sensor Layout	2
5	Processing Report	3

Contact: Dr. Rainer Knust Alfred Wegener Institute Columbusstrasse, D-27568 Bremerhaven, GERMANY Tel: +49(471)4831-1709 Fax: +49(471)4831-1918 Mail: Polarstern-Coordination@awi.de

Processing Agency: FIELAX Gesellschaft für wissenschaftliche Datenverarbeitung mbH Schleusenstr. 14, D-27568 Bremerhaven, GERMANY Tel: +49 (0) 471 30015 0 Fax: +49 (0) 471 30015 22 Mail: info@fielax.de Ref.: HE464_nav.pdf Vers.

Vers.: 1 Date: 2016/07/20 Status: final

1 Introduction

This report describes the processing of raw data acquired by position sensors on board RV Heincke during expedition HE465 to receive a validated master track which is used as reference of further expedition data.

2 Workflow

The different steps of processing and validation are visualized in figure 1. Unvalidated data of up to three sensors and ship-motion data are extracted from the DAVIS SHIP data base (https://dship.awi.de) in a 1-second interval. They are converted to ESRI point shapefiles and imported to ArcGIS. A visual screening is performed to evaluate data quality and remove outliers manually. The position data from each position sensor are centered to the destined master track origin by applying ship-motion data (angles of roll, pitch and heading) and lever arms. For all three resulting position tracks, a quality check is performed using a ship's speed filter and an acceleration filter. Filtered positions are flagged. In addition, a manual check is performed to flag obvious outliers. Those position tracks are combined to a single master track depending on a sensor priority list (by accuracy, reliability) and availability / applied exclusion of automatically or manually flagged of data. Missing data up to a time span of 60 seconds are linearly interpolated. To reduce the amount of points for overview maps the master track is generalized by using the Ramer-Douglas-Peucker algorithm. This algorithm returns only the most significant points from the track. Full master track and generalized master track are written to text files and imported to PANGAEA (http://www.pangaea.de) for publication.

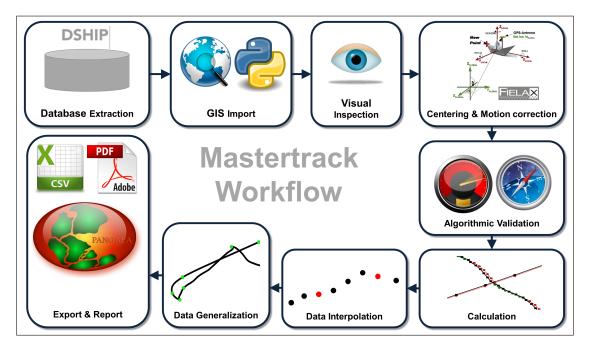


Figure 1: Workflow of master track data processing

3 Cruise details

Vessel name	RV Heincke
Cruise name	HE465
Cruise start	02.06.2016 Bremerhaven
Cruise end	19.06.2016 Bremerhaven
Cruise duration	18 days
Master track reference point:	Resulting master track is referenced to PHINS installation point.

4 Sensor Layout

This chapter describes the position sensors mounted during this cruise.

Position sensors

Sensor name	IXSEA PHINS III, short: PHINS				
Description	Inertial navigation system with reference positions from Trimble DGPS				
Accuracy	\pm 0.5-3.0 m				
Installation point	Electrician's workshop, close to COG				
Installation offset	Offset from master trackreference point to sensor installation pointXPositive to bow0.000 mYPositive to starboard0.000 mZPositive upwards0.000 m				

Sensor name	Trimble Marine SPS461, short: Trimble					
Description	DGPS-Receiver, correction type DGPS RTCM 2.x, correction source					
	DGPS Base via radio					
Accuracy	Horizontal: \pm 0.25 m + 1 ppm & Vertical: \pm 0.50 m + 1 ppm					
Installation point	Starboard railing above bridge deck					
Installation offset	Offset from master track reference point to sensor installation pointXPositive to bow5.044 mYPositive to starboard6.788 mZPositive upwards11.489 m					

Sensor name	SAAB R5 SUPREME NAV, short: SAAB				
Description	DGPS-Receiver, SBAS-correction with RTCM-104 input				
Accuracy	GPS: ± 3.0 m; DGPS (2D RMS): ± 1.0 m				
Installation point	Observational Deck, fore rail				
Installation offset	Offset from master track reference point to sensor installation pointXPositive to bow12.985 mYPositive to starboardZPositive upwards11.328 m				

Motion sensor

Sensor name IXSEA PHINS III, short: PHINS	
Description Inertial navigation system with reference positions from Trimble DGPS	
Accuracy \pm 0.01 roll, \pm 0.01 pitch, \pm 0.05 heading (deg)	
Installation point Electrician's workshop, close to COG	

5 Processing Report

Database Extraction

Data source DSHIP database (dship.awi.de)	
Exported values 1555200	
First dataset 2016-06-02T00:00 UTC	
Last dataset 2016-06-19T23:59:59 UTC	

Centering & Motion Compensation

Each position track has been centered to the *PHINS installation point* by applying the correspondent motion angles for heading, roll and pitch as well as the installation offsets from chapter 2. The motion data were acquired by IXSEA PHINS III.

Automatic Validation

The following thresholds were applied for the automatic flagging of the position data:

Speed Maximum 20 kn between two datapoints.	
Acceleration Maximum 1 m/s ² between two datapoints.	
Change of course Maximum 5° between two datapoints.	

Manual Validation

Obvious outliers were removed manually. For details see Processing Logbook of RV "Heincke" (hdl:10013/epic.45841).

Flagging result

	PHINS		Trimble		SAAB	
Missing	0	0.000%	1	0.000%	0	0.000%
Speed	472	0.030%	3	0.000%	0	0.000%
Acceleration	255415	16.423%	32	0.002%	0	0.000%
Course	513981	33.049%	446151	28.688%	441273	28.374%
Manually	0	0.000%	0	0.000%	0	0.000%

Master Track Generation

The master track is derived from the position sensors' data selected by priority.

Sensor priority used:

- 1. SAAB
- 2. Trimble
- 3. PHINS

Filters applied: manual, speed, acceleration.

Distribution of position sensor data in master track:

Sensor Data points		Percentage
Total	1555200	100.000 %
PHINS	0	0.000%
Trimble	0	0.000%
SAAB	1555200	100.000 %
Interpolated	0	0.000%
Gaps	0	0.000%

Remarks

None.

Score

For each cruise, a score is calculated ranging from 0 (no data) to 100 (only very good data). the score for the cruise HE465 is 97.

Generalization

The master track is generalized to receive a reduced set of the most significant positions of the track using the Ramer-Douglas-Peucker algorithm and allow a maximum tolerated distance between points and generalized line of 4 arcseconds.

Results:

Number of generalized points	656 points
Data reduction	99.9578 %

Result files

Report in XML format:

The XML contains all information of the master track generation in a machine-readable format. In addition a XSD schema file is provided.

Master track text file:

The format is a plain text (tab-delimited values) file with one data row in 1 second interval.

Column separator	Tabulator "	abulator "\t"	
Column 1	Date and ti	and time expressed according to ISO 8601	
Column 3	Latitude in decimal format, unit degree		
Column 4	Longitude	in decimal format, unit degree	
Column 5	Flag for data source		
	1	PHINS	
	2	Trimble	
	3	SAAB	
	INTERP	Interpolated point	
	GAP	Missing data	

Text file of the generalized master track:

The format is a plain text (tab-delimited values) file.

Column separator	Tabulator "\t"
Column 1	Date and time expressed according to ISO 8601
Column 2	Latitude in decimal format, unit degree
Column 3	Longitude in decimal format, unit degree

Processing Report:

This PDF document.

Cruise map

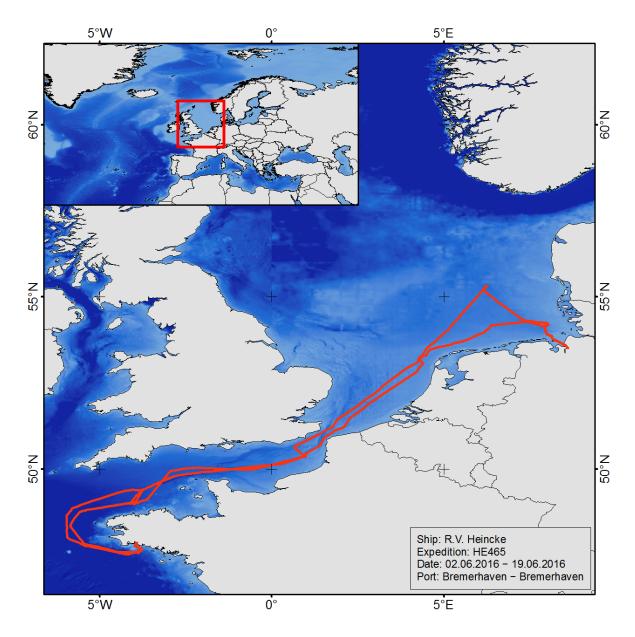


Figure 2: Map of the generalized master track