Low- to high-productivity pattern within Heinrich Stadial 1: Inferences from dinoflagellate cyst records off Senegal


Contact
Ralf.Tiedemann [ at ] awi.de

Abstract

In order to investigate a possible connection between tropical northeast (NE) Atlantic primary productivity, Atlantic meridional overturning circulation (AMOC), and drought in the Sahel region during Heinrich Stadial 1 (HS1), we used dinoflagellate cyst (dinocyst) assemblages, Mg/Ca based reconstructed temperatures, stable carbon isotopes (δ13C) and geochemical parameters of a marine sediment core (GeoB 9508-5) from the continental slope offshore Senegal. Our results show a two-phase productivity pattern within HS1 that progressed from an interval of low marine productivity between ~19 and 16kyr BP to a phase with an abrupt and large productivity increase from ~16 to 15kyr BP. The second phase is characterized by distinct heavy planktonic δ13C values and high concentrations of heterotrophic dinocysts in addition to a significant cooling signal based on the reconstructions of past sea surface temperatures (SSTs). We conclude that productivity variations within HS1 can be attributed to a substantial shift of West African atmospheric processes. Taken together our results indicate a significant intensification of the North East (NE) trade winds over West Africa leading to more intense upwelling during the last millennium of HS1 between ~16 and 15kyr BP, thus leaving a strong imprint on the dinocyst assemblages and sea surface conditions. Therefore, the two-phase productivity pattern indicates a complex hydrographic setting suggesting that HS1 cannot be regarded as uniform as previously thought. © 2013 Elsevier B.V.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published
Eprint ID
45012
DOI https://www.doi.org/10.1016/j.gloplacha.2013.03.007

Cite as
Bouimetarhan, I. , Groeneveld, J. , Dupont, L. and Zonneveld, K. (2013): Low- to high-productivity pattern within Heinrich Stadial 1: Inferences from dinoflagellate cyst records off Senegal , Global and Planetary Change, 106 , pp. 64-76 . doi: https://www.doi.org/10.1016/j.gloplacha.2013.03.007


Share


Citation

Geographical region

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item