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Discussion of Different Model Approaches for the Flow Behavior of Ice
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Ice of Antarctic ice shelves is assumed to behave on long-term as an incompressible viscous fluid, which is dominated on
short time scales by the elastic response. Hence, a viscoelastic material model is required. The thermodynamic pressure is
treated differently in elastic and viscous models. For small deformations, the elastic isometric stress for ν → 0.5 gives similar
results to those solving for pressure in an incompressible laminar flow model. A viscous model, in which the thermodynamic
pressure is approximated by an elastic isometric stress, can be easily extended to viscoelasticity.
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1 Introduction
Ice shelves are floating extensions of ice streams and glaciers. The mass loss of ice shelves at the ice front is called calving.
The understanding of calving processes requires to investigate the stress at the ice front, see [1]. Here, different approaches
are compared to deal with the pressure term in modeling the stress situation of ice shelves.
In an “infinitely” wide ice shelf, it is sufficient to model a 2-D geometry assuming
plane strain conditions. The dimensions and boundary conditions are given in Fig. 1
with the displacement vector u = (u,w)T . The traction at the bottom balances the
weight of the ice shelf. Hence, this traction condition and the one at the ice front
(right side) are given by the Robin-type boundary condition σn = ρswg(−z−w) for
−z−w < 0. The Cartesian coordinate z originates at sea level and ρsw = 1028 kg

m3

is the density of sea water.
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Fig. 1: Boundary conditions.

2 Linear Viscosity
In the incompressible laminar flow module of the commercial finite element software COMSOL∗, the quasi-static momentum
balance is solved using the incompressibility condition, the linearized kinematic relation and the linear viscous material law

divσ+f = 0, divv = 0, ε̇ =
1

2

(
gradv + (gradv)T

)
, σ = −pI+σD with σD = 2ηε̇. (1)

The Cauchy stress tensor is denoted by σ with its deviator σD and ε̇ is the strain rate tensor. The volume forces f consists
of the ice weight fz = −ρice g with the ice density ρice = 910 kg

m3 and η = 1015 Pa s is the viscosity, both common values for
ice. This model has the velocities v and the fluid pressure p as unknowns (Q2P1 elements). Additionally, the computational
domain is adapted in every time step by a moving mesh, which also includes an accumulation rate of 0.35 m

a . This laminar
flow model is compared to a viscous model, which approximates the thermodynamic pressure by an elastic isometric stress
described by a constitutive relation

divσ + f = 0, ε =
1

2

(
gradu+ (gradu)T

)
, σ = Ktr(ε)I + σD with σD = 2ηε̇ (2)

as suggested in [2]. The displacement vector u contains the unknowns in this model and K = E
3(1−2ν) is the bulk modulus in-

cluding the elastic parameters, namely Young’s modulus E and Poisson’s ratio ν. Hence, the changes of volume are reversible
based on the fundamental assumption that the volume-changing part of the stress tensor is purely elastic. Thus the viscous
material is only characterized by the stress deviator. Adapting the deviatoric stress, it is easily possible to expand this model to
viscoelasticity, which is required to describe the behavior of ice [3]. In order to include the short-term elastic behavior, which
is often assumed to be brittle and compressible for ice [4], the compressibility is only included in the elastic part.

3 Results
In the following, the analysis of the expression 1

3 tr(σ), the volumetric part of the stress tensor, shows the application field
approximating the thermodynamic pressure by the elastic isometric stress. For the latter case, Poisson’s ratio ν has to converge
to 0.5 to simulate incompressibility and Young’s modulus is E = 9GPa, a common value assumed for polycrystalline ice [4].
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314 Section 6: Material modelling in solid mechanics

Figure 2 illustrates the thermodynamic pressure a), the elastic
isometric stress b) and the difference of both c) in the ice shelf
after one year. The difference is at least two order of magnitude
smaller than the pressure. The major deviations occur directly
at the ice front. These variations are the result of the compu-
tation on different configurations. In the laminar flow module,
the model uses the external and internal forces with regard to
the current configuration based on the moving mesh. However,
the viscous model computes the actual displacements, whereas
the applied forces act on the reference configuration.
Calving processes of ice shelves are controlled by the first (most
tensile) principal stress. It is therefore essential to consider
the stress distribution at the upper surface in more detail as the
largest tensile stress is located on this surface. The tensile stress
in the upper part is caused by the bending moment of the bound-
ary disturbance at the ice front. Figure 3 shows the volumetric
part of the stress tensor over the dimensionless distance to the
ice front at the upper surface. In this figure, the solid lines depict
the stress distribution using the elastic isometric approach and
the dashed lines display the thermodynamic pressure. The blue
curves after 7 days are nearly identical. Also the red curves,
which shows the stress result after one year, are close together
and it is sufficient to take the elastic isometric stress as a good
approximation of the thermodynamic pressure. However, the
deviation gets larger with an increase of the simulation time.
After 10 years, the difference is already noticeable with a shift
of maximal 1200Pa. This deviation originates from the above
mentioned computation using different configurations and the
additional accumulation rate of the laminar flow model. In or-
der to illustrate this, the deflection at the upper surface is shown
in Fig. 4 for the same points in time. The deflections of the two
models differ after t = 10 a and lead to the stress deviation.
Figure 5 points out that the elastic isometric stress curves con-
verge to the thermodynamic pressure for ν → 0.5 and t = 7 d.
A Poisson’s ratio of a compressible material, see the gray curve
with ν = 0.3, gives a similar maximum of the volumetric stress,
which is caused by the boundary disturbance at the ice front.
However, the remaining stress distribution differs considerably
from the incompressible case. The thermodynamic pressure is
very well approximated by the isometric elastic stress taking
ν = 0.49. The approximation quality is also slightly dependent
on Young’s modulus E as this value influences the bulk modu-
lusK. DecreasingE below a certain value means that Poisson’s
ratio of ν = 0.499 is needed to provide sufficient results.

Fig. 2: Comparison (t = 1 a, ν = 0.499) of a) thermodynamic pres-
sure−p, b) elastic isometric stressKtr(ε), c) differenceKtr(ε)+p.
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Fig. 3: Stress distribution after the upper surface using Ktr(ε) and
ν = 0.499 (solid lines) instead of −p (dashed lines).
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Fig. 4: Deflection w of the upper surface for ν = 0.499.
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Fig. 5: Stress distribution for different values of Poisson’s ratio.

4 Conclusion
In the case of small deformation on short time scales, like days to months, the thermodynamic pressure of the incompressible
laminar flow model is very well approximated by the elastic isometric stress for ν → 0.5. Stress distributions using finite
deformations have to be considered for longer simulation times.
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