Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis


Contact
laurie.c.hofmann [ at ] awi.de

Abstract

The concentration of CO(2) in global surface ocean waters is increasing due to rising atmospheric CO(2) emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO(2) concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO(2) concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO(2) concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO(2) and was highest in algae grown at 665 µatm CO(2). Nitrate and phosphate uptake rates were inversely related to CO(2), while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO(2). The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO(2) due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO(2) are discussed.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published
Eprint ID
46788
DOI https://www.doi.org/10.1093/jxb/ers369

Cite as
Hofmann, L. C. , Straub, S. and Bischof, K. (2013): Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis , Journal of Experimental Botany, 64 (4), pp. 899-908 . doi: https://www.doi.org/10.1093/jxb/ers369


Share


Citation

Geographical region
N/A

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item