Shear localisation in anisotropic, non-linear viscous materials that develop a CPO: A numerical study


Contact
Ilka.Weikusat [ at ] awi.de

Abstract

Localisation of ductile deformation in rocks is commonly found at all scales from crustal shear zones down to grain scale shear bands. Of the various mechanisms for localisation, mechanical anisotropy has received relatively little attention, especially in numerical modelling. Mechanical anisotropy can be due to dislocation creep of minerals (e.g. ice or mica) and/or layering in rocks (e.g. bedding, cleavage). We simulated simple-shear deformation of a locally anisotropic, single-phase power-law rheology material up to shear strain of five. Localisation of shear rate in narrow shear bands occurs, depending on the magnitude of anisotropy and the stress exponent. At high anisotropy values, strain-rate frequency distributions become approximately log-normal with heavy, exponential tails. Localisation due to anisotropy is scale-independent and thus provides a single mechanism for a self-organised hierarchy of shear bands and zones from mm-to km-scales. The numerical simulations are compared with the natural example of the Northern Shear Belt at Cap de Creus, NE Spain.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Research Networks
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Published
Eprint ID
50594
DOI https://www.doi.org/10.1016/j.jsg.2019.03.006

Cite as
de Riese, T. , Evans, L. , Gomez-Rivas, E. , Griera, A. , Lebensohn, R. A. , Llorens, M. G. , Ran, H. , Sachau, T. , Weikusat, I. and Bons, P. D. (2019): Shear localisation in anisotropic, non-linear viscous materials that develop a CPO: A numerical study , Journal of Structural Geology, 124 , pp. 81-90 . doi: https://www.doi.org/10.1016/j.jsg.2019.03.006


Share


Citation

Geographical region

Research Platforms

Campaigns
N/A


Actions
Edit Item Edit Item