

# **Master Track RV Heincke HE548**

# **Data Processing Report**

## **Contents**

| 1 | Introduction      | 1 |
|---|-------------------|---|
| 2 | Workflow          | 1 |
| 3 | Sensor Layout     | 2 |
| 4 | Processing Report | 3 |

Contact:

Dr. Rainer Knust
Alfred-Wegener-Institute

Am Handelshafen 12, D-27570 Bremerhaven, GERMANY

Mail: info@awi.de

Processing Agency:

**FIELAX** 

Schleusenstr. 14, D-27568 Bremerhaven, GERMANY

Mail: info@fielax.de

| Ref.: HE548_nav.pdf | Vers.: 1 | Date: 2020/04/17 | Status: final |
|---------------------|----------|------------------|---------------|
|---------------------|----------|------------------|---------------|



#### 1 Introduction

This report describes the processing of raw data acquired by position sensors on board RV Heincke during expedition HE548 to receive a validated master track which is used as reference of further expedition data.

### 2 Workflow

The different steps of processing and validation are visualized in figure 1. Unvalidated data of up to three sensors and ship-motion data are extracted from the DAVIS SHIP data base (https://dship.awi.de) in a 1-second interval. They are converted to ESRI point shapefiles and imported to ArcGIS. A visual screening is performed to evaluate data quality and remove outliers manually. The position data from each position sensor are centered to the destined master track origin by applying ship-motion data (angles of roll, pitch and heading) and lever arms. For all three resulting position tracks, a quality check is performed using a ship's speed filter and an acceleration filter. Filtered positions are flagged. In addition, a manual check is performed to flag obvious outliers. Those position tracks are combined to a single master track depending on a sensor priority list (by accuracy, reliability) and availability / applied exclusion of automatically or manually flagged of data. Missing data up to a time span of 60 seconds are linearly interpolated. To reduce the amount of points for overview maps the master track is generalized by using the Ramer-Douglas-Peucker algorithm. This algorithm returns only the most significant points from the track. Full master track and generalized master track are written to text files and imported to PANGAEA (http://www.pangaea.de) for publication.

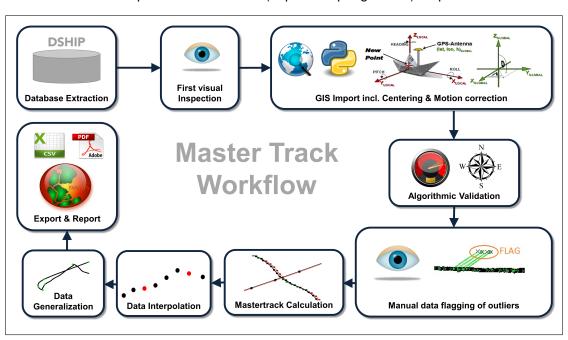



Figure 1: Workflow of master track data processing



# 3 Sensor Layout

This chapter describes the position sensors mounted during this cruise.

# Cruise details according to Cruise Report https://www.pangaea.de/expeditions/

Vessel name RV Heincke

Cruise name HE548

Cruise start 2020-03-02 Bremerhaven
Cruise end 2020-03-15 Bremerhaven

Cruise duration 13 days

Master track reference point: Resulting master track is referenced to PHINS installation point.

#### **Position sensors**

| Sensor name         | IXSEA PHINS III, short: PHINS                                                                                                                              |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Description         | Inertial navigation system with reference positions from Trimble DGPS                                                                                      |  |  |  |
| Accuracy            | $\pm$ 0.5-3.0 m                                                                                                                                            |  |  |  |
| Installation point  | Electrician's workshop, close to COG                                                                                                                       |  |  |  |
| Installation offset | Offset from master track reference point to sensor installation point X Positive to bow 0.000 m Y Positive to starboard 0.000 m Z Positive upwards 0.000 m |  |  |  |

| Sensor name         | Trimble Marine SPS461, short: Trimble                                                                                                                        |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Description         | DGPS-Receiver, correction type DGPS RTCM 2.x, correction source                                                                                              |  |  |  |  |
|                     | DGPS Base via radio                                                                                                                                          |  |  |  |  |
| Accuracy            | Horizontal: $\pm$ 0.25 m + 1 ppm & Vertical: $\pm$ 0.50 m + 1 ppm                                                                                            |  |  |  |  |
| Installation point  | Observational Deck, fore rail                                                                                                                                |  |  |  |  |
| Installation offset | Offset from master track reference point to sensor installation point X Positive to bow 13.648 m Y Positive to starboard 2.976 m Z Positive upwards 11.406 m |  |  |  |  |

| Sensor name         | SAAB R5 SUPREME NAV, short: SAAB                                                                                                                             |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Description         | DGPS-Receiver, SBAS-correction with RTCM-104 input                                                                                                           |  |  |  |
| Accuracy            | GPS: $\pm$ 3.0 m; DGPS (2D RMS): $\pm$ 1.0 m                                                                                                                 |  |  |  |
| Installation point  | Observational Deck, fore rail                                                                                                                                |  |  |  |
| Installation offset | Offset from master track reference point to sensor installation point X Positive to bow 12.985 m Y Positive to starboard 2.958 m Z Positive upwards 11.328 m |  |  |  |



#### **Motion sensor**

| Sensor name                                                                     | IXSEA PHINS III, short: PHINS |  |
|---------------------------------------------------------------------------------|-------------------------------|--|
| Description Inertial navigation system with reference positions from Trimble DG |                               |  |
| Accuracy $\pm$ 0.01 roll, $\pm$ 0.01 pitch, $\pm$ 0.05 heading (deg)            |                               |  |
| Installation point Electrician's workshop, close to COG                         |                               |  |

# **4 Processing Report**

#### **Database Extraction**

| Data source             | DSHIP database (dship.awi.de) |
|-------------------------|-------------------------------|
| Exported values 1123201 |                               |
| First dataset           | 2020-03-02T15:00:00 UTC       |
| Last dataset            | 2020-03-15T15:00:00 UTC       |

### **Centering & Motion Compensation**

Each position track has been centered to the *PHINS installation point* by applying the correspondent motion angles for heading, roll and pitch as well as the installation offsets from chapter 3. The motion data were acquired by IXSEA PHINS III.

#### **Automatic Validation**

The following thresholds were applied for the automatic flagging of the position data:

| Speed                                                           | Maximum 20 kn between two datapoints. |
|-----------------------------------------------------------------|---------------------------------------|
| Acceleration Maximum 1 m/s <sup>2</sup> between two datapoints. |                                       |
| Change of course                                                | Maximum 5° between two datapoints.    |

#### **Manual Validation**

Obvious outliers were removed manually. For details see Processing Logbook of RV Heincke (hdl:10013/epic.45841).

### Flagging result

|              | PHINS  |         | Trimble |         | SAAB   |         |
|--------------|--------|---------|---------|---------|--------|---------|
| Missing      | 0      | 0.000%  | 0       | 0.000%  | 0      | 0.000%  |
| Speed        | 0      | 0.000%  | 0       | 0.000%  | 0      | 0.000%  |
| Acceleration | 832    | 0.074%  | 819     | 0.073%  | 457    | 0.041%  |
| Course       | 145899 | 12.990% | 173661  | 15.461% | 175200 | 15.598% |
| Manually     | 0      | 0.000%  | 0       | 0.000%  | 0      | 0.000%  |



#### **Master Track Generation**

The master track is derived from the position sensors' data selected by priority.

Sensor priority used:

- 1. PHINS
- 2. Trimble
- 3. SAAB

Filters applied: manual, speed, acceleration.

Distribution of position sensor data in master track:

| Sensor       | Data points | Percentage |
|--------------|-------------|------------|
| Total        | 1123201     | 100.000%   |
| PHINS        | 1122369     | 99.926%    |
| Trimble      | 832         | 0.074%     |
| SAAB         | 0           | 0.000%     |
| Interpolated | 0           | 0.000%     |
| Gaps         | 0           | 0.000%     |

#### Remarks

None.

#### **Score**

For each cruise, a score is calculated ranging from 0 (no data) to 100 (only very good data). The score for the cruise HE548 is 99.

### Generalization

The master track is generalized to receive a reduced set of the most significant positions of the track using the Ramer-Douglas-Peucker algorithm and allow a maximum tolerated distance between points and generalized line of 4 arcseconds.

#### Results:

| Number of generalized points | 757 points |
|------------------------------|------------|
| Data reduction               | 99.9326%   |

#### **Result files**

Master track text file:



## The format is a plain text (tab-delimited values) file with one data row in 1 second interval.

| Column separator | Tabulator "\t"                                |                    |  |
|------------------|-----------------------------------------------|--------------------|--|
| Column 1         | Date and time expressed according to ISO 8601 |                    |  |
| Column 2         | Latitude in decimal format, unit degree       |                    |  |
| Column 3         | Longitude in decimal format, unit degree      |                    |  |
| Column 4         | Flag for data source                          |                    |  |
|                  | 1                                             | PHINS              |  |
|                  | 2                                             | Trimble            |  |
|                  | 3                                             | SAAB               |  |
|                  | INTERP                                        | Interpolated point |  |
|                  | GAP                                           | Missing data       |  |

# Text file of the generalized master track:

The format is a plain text (tab-delimited values) file.

| Column separator | Tabulator "\t"                                |
|------------------|-----------------------------------------------|
| Column 1         | Date and time expressed according to ISO 8601 |
| Column 2         | Latitude in decimal format, unit degree       |
| Column 3         | Longitude in decimal format, unit degree      |

## Processing Report:

This PDF document.



# Cruise map

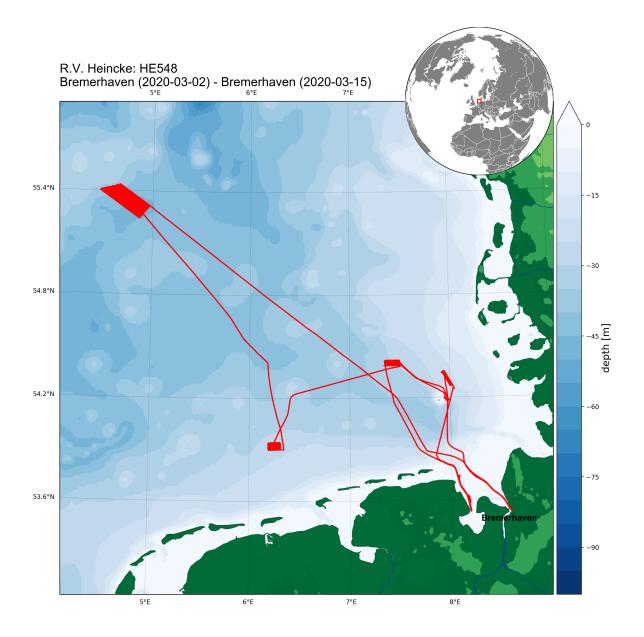



Figure 2: Map of the generalized master track