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Abstract
Characterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and 
future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, 
is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review 
provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) 
for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new 
open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides 
enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic 
groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, 
molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences 
for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb 
portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic 
groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. 
The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA 
barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change.
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Introduction

Biodiversity of the marine zooplankton assemblage

The zooplankton assemblage of the global ocean exhibits 
exceptional levels of phylogenetic, taxonomic, and func-
tional diversity, with described species spanning 15 phyla 
and 41 functional groups (orders or classes) of animals. 
The assemblage includes both holoplankton, which are 
planktonic throughout their life cycle, and meroplank-
ton, which include planktonic forms of animals with both 
pelagic and benthic life stages. The diversity of forms 
is also classified by size, including mesozooplankton 
(0.2–20 mm), macrozooplankton (2–20 cm), and mega-
zooplankton (20–200 cm) (Sieburth et al. 1978; Wiebe 
et al. 2017). In addition, immature (eggs and larvae) stages 
of meroplanktonic species may be even smaller. Estimates 
of the actual number of species, including cryptic and new 
species, range widely (Bucklin et al. 2010c). Currently, 
there are  ~5700 described species of metazoan holoplank-
ton, with an estimated additional ~1600 species yet to be 
discovered and/or described (Wiebe et al. 2010). The esti-
mated number of species increases significantly, to nearly 
28,000 total metazoan species (Lenz 2000), when mero-
plankton are included.

The marine zooplankton assemblage presents a number 
of challenges for species-level diversity analyses. Some 
taxonomic groups (e.g., Copepoda) include numerous 
groups of sibling species, which are difficult or impos-
sible (i.e., cryptic) to discriminate based on morphologi-
cal characteristics (Knowlton 2000; Lindsay et al. 2017; 
Snelgrove et al. 2017; Choquet et al. 2018). Many species 
exhibit broad biogeographical distributions spanning mul-
tiple ocean basins, some with genetic divergence among 
regional populations (Bucklin et al. 2010b; Peijnenburg 
and Goetze 2013; Kolbasova et al. 2020). The assemblage 
is characterized by high local-to-global ratios of biodi-
versity, especially in regions characterized as biodiversity 
hotspots (Tittensor et al. 2010; Snelgrove et al. 2017). In 
some regions of the ocean, a single sample may contain 
hundreds of species, and as many as 10% of the known 
species of a given taxon (McGowan and Walker 1979).

Marine zooplankton are considered rapid responders 
to climate change (Hays et al. 2005; Richardson 2008; 
Beaugrand et al. 2010). Species-specific responses to envi-
ronmental variation and anthropogenic perturbations have 
been documented for many taxonomic groups, and changes 
in the demographic patterns and biogeographical range 
shifts of single species have been shown to have signifi-
cant impact on functioning of pelagic food webs, carbon 
cycling, and ecosystem sustainability (Beaugrand 2005; 
Hay 2006; Beaugrand et al. 2010; Weydmann et al. 2014, 

2018; Polyakov et al. 2020). Despite—and because of—
the systematic and taxonomic complexity of the marine 
zooplankton assemblage, accurate and reliable discrimi-
nation and identification of species is critically needed.

DNA barcoding of marine zooplankton

The most frequently-used gene region for species-level iden-
tification of marine zooplankton is a ~570 bp region of mito-
chondrial cytochrome oxidase I (COI; Hebert et al. 2003; 
Bucklin et al. 2011). Other gene regions used for species 
identification include the mitochondrial 16S ribosomal RNA 
(rRNA) gene, which is widely used for Cnidaria (Lindsay 
et al. 2015) and Copepoda (Bucklin et al. 1992; Lindeque 
et al. 1999; Goetze 2010), and a portion of the nuclear Inter-
nal Transcribed Spacer (ITS) region, which has been used 
for Ctenophora (Johansson et al. 2018).

Given the phylogenetic diversity of the assemblage, it is 
perhaps not surprising that the so-called “universal” PCR 
primers for the COI barcode region (Folmer et al. 1994) do 
not reliably amplify species of all groups of zooplankton. 
Subsequent efforts over the many years of DNA barcoding 
include group-specific primers (e.g., Bucklin et al. 2010a) 
and re-designed universal primers (Geller et al. 2013; Leray 
et al. 2013).

The primary goal of DNA barcoding using COI is dis-
crimination and identification of species based on the non-
overlapping frequency distributions of intra- and inter-spe-
cific levels of sequence divergence, known as the barcode 
gap (Meyer and Paulay 2005). The presence of a COI bar-
code gap is a reliable feature across most phyla and taxo-
nomic groups of the marine mesozooplankton assemblage 
(Bucklin et al. 2011). A confounding issue is the significant 
COI sequence divergence of individuals of the same spe-
cies, which may or may not be associated with geographic 
isolation or morphological differentiation (Peijnenburg and 
Goetze 2013). The challenge of accurate interpretation of the 
taxonomic significance of intraspecific variation of the COI 
barcode region for marine zooplankton led to permanent 
maintenance of associated archives with photographs of the 
living specimen, voucher DNA from the barcoded specimen, 
and voucher specimens preserved in both 95% ethyl alcohol 
for later genetic analysis and 4% formalin for morphologi-
cal examination of soft tissues (Bucklin et al. 2010b). The 
significance and interpretation of genuinely cryptic varia-
tion—genetic divergence within a known or described spe-
cies—continues to be a subject of debate.

The COI barcode region can provide valuable insights 
into evolutionary processes, demographic history, and popu-
lation genetic diversity, structure, and connectivity of a spe-
cies. Many zooplankton species exhibit sufficient intraspe-
cific DNA sequence variation in the COI barcode region 
to allow useful analysis of population genetic diversity and 
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structure (e.g., Goodall-Copestake et al. 2010; Goetze et al. 
2016; Choo et al. 2020). Phylogeographic analysis of zoo-
plankton has revealed patterns and pathways of population 
connectivity over a variety of spatial scales (Questel et al. 
2016; DeHart et al. 2020), and has revealed new insights 
into the evolution and demographic history of species (e.g., 
Peijnenburg et al. 2004; Blanco-Bercial et al. 2011; Aarb-
akke et al. 2014; Burridge et al. 2015; Goetze et al. 2015).

DNA metabarcoding of marine zooplankton

Zooplankton biodiversity is an essential component of eco-
system monitoring and assessment for many applications, 
from fisheries management to climate impacts (O’Brien 
et  al. 2013). The need for rapid analysis of the pelagic 
assemblage has driven development and widespread use 
of DNA barcoding for analysis of complex environmental 
samples using metabarcoding (i.e., high-throughput DNA 
sequencing of target genes from environmental samples 
for analysis of taxon richness; Taberlet et al. 2012). Meta-
barcoding using hypervariable regions of the nuclear 18S 
ribosomal RNA (rRNA) gene has been used for detection 
of marine microbial diversity (Amaral-Zettler et al. 2009; 
DeVargas et al. 2015).

The taxonomic complexity of zooplankton samples 
makes metabarcoding a particularly useful and effective 
approach for analysis of biodiversity, but this also makes 
species-level identifications particularly challenging (Corell 
and Rodríguez-Ezpeleta 2014; Bucklin et al. 2016; Rey 
et al. 2020). Metabarcoding primers and protocols have 
been developed for analysis of marine zooplankton diver-
sity using COI, usually targeting a shorter region within the 
usual barcode region (Leray et al. 2013; Cristescu 2014; 
Stefanni et al. 2018; Wangensteen et al. 2018; Suter et al. 
2020). This application makes the COI barcode sequences 
from archived voucher specimens that have been accurately 
identified by taxonomic experts even more valuable (Rau-
pach and Radulovici 2015; Bucklin et al. 2016). Studies have 
shown that species identification using DNA metabarcod-
ing improves when reference sequence databases are spe-
cifically designed for the particular taxonomic groups and/
or geographic regions of interest (Hirai et al. 2015; Lindsay 
et al. 2015; Questel et al. 2021). Best practices also include 
ensuring that digital and/or physical vouchers are linked to 
all COI reference sequences, to provide additional resources 
for confirmation, error checking, and future investigations 
based on broader sampling.

Need for a global COI reference database

A taxonomically complete, globally comprehensive COI 
reference sequence database for marine zooplankton is an 
essential foundation for widespread implementation of DNA 

barcoding and metabarcoding applications for ocean ecosys-
tem monitoring and assessment. The COI barcode region 
is certain to remain an indispensible tool for accurate and 
reliable species-level identification of zooplankton, which is 
becoming increasingly necessary for fisheries management 
and environmental protection. The availability of DNA bar-
code sequences for accurately identified species with reliable 
collection metadata provides a resource for various multi-
variate statistical data explorations to relate the barcode data 
to environmental conditions and variability, including range 
shifts and other responses to climate change. A number of 
studies have demonstrated the wide range of important ques-
tions regarding marine diversity and ecosystem dynamics 
using fully georeferenced DNA barcode data (Bucklin et al. 
2016; Rey et al. 2020). Public access to data and metadata 
for records for DNA barcode sequences of specimens that 
have been accurately identified to species is necessary to 
ensure species-level detection and analysis.

The MetaZooGene database (MZGdb;  https://​metaz​
oogene.​org/​MZGdb) includes both holoplanktonic and 
meroplanktonic marine species, and currently includes bar-
code data for ~ 5600 species. The numbers of known spe-
cies with barcodes will certainly continue to increase, as 
new species are discovered, described, and barcoded. The 
MZGdb has been designed to simplify targeted data searches 
and applications, which allow users to designate particu-
lar taxonomic groups and/or geographic regions of inter-
est. One of the most important expected applications of the 
database is the capacity to map and visualize the geographic 
distributions of species observations (collection locations 
of identified specimens) and barcoding records (collection 
locations of specimens used for DNA sequencing) on global 
and regional scales. Another expected use of the MZGdb is 
the analysis of completeness of barcode records by taxon 
and region. This is an essential step that can identify miss-
ing barcode data for a given species by geographic region. 
This information can inform and prioritize continued efforts 
toward taxonomically complete and geographically compre-
hensive reference databases for marine zooplankton.

Projects focused on barcoding marine zooplankton

Census of Marine Zooplankton (CMarZ)

The Census of Marine Zooplankton (CMarZ; http://​www.​
cmarz.​org/) was a field project of the Census of Marine Life 
active during 2004–2010 that focused on species diversity of 
zooplankton throughout the global ocean. DNA barcoding 
was a primary goal for the program, and CMarZ established 
barcoding laboratories in the USA (University of Connecti-
cut), Japan (University of Tokyo), and China (Institute of 
Oceanology, Chinese Academy of Sciences), with new 
capacity for barcoding in Germany (Alfred Wegener Institute 

https://metazoogene.org/MZGdb
https://metazoogene.org/MZGdb
http://www.cmarz.org/
http://www.cmarz.org/
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for Polar and Marine Research) and India (Regional Centre 
of National Institute of Oceanography, Kochi). CMarZ was 
dedicated to “gold-standard” DNA barcoding, with prior 
morphological taxonomic identification of any specimen 
to species level, with archiving of associated specimen and 
photo vouchers (Fig. 1). When CMarZ ended in 2010, identi-
fied specimens had been sequenced for a selected barcode 
gene region, most usually the mitochondrial cytochrome oxi-
dase I (mtCOI) gene, for 25% to 30% of the described spe-
cies of marine holozooplankton (Bucklin et al. 2010c, 2011).

Norwegian Taxonomy Initiative

The Norwegian Taxonomy Initiative (NTI) was established 
in 2009 to improve knowledge about Norwegian biodiver-
sity, with the ultimate goal of providing an inventory of all 
multicellular species occurring in Norway. The program, 
coordinated by the Norwegian Biodiversity Information 
Centre, funds survey and barcoding projects with special 
emphasis on poorly known taxa. Barcoding is conducted 
in collaboration with the Norwegian Barcode of Life (Nor-
BOL), the local node of iBOL, and the resulting data are 
made available through the Barcode of Life Data Systems 
(http://​www.​bolds​ystems.​org/). NTI has funded inventory 
and barcoding projects on several taxa that encompass 
marine zooplankton, resulting in over 570 vouchered COI 
sequences from the North Sea, Northeast Atlantic, and Arc-
tic Ocean. Project COPCLAD (2015–2017) collected DNA 
samples of planktonic Copepoda and Cladocera, result-
ing in 253 barcode-compliant COI sequences for 64 spe-
cies in Norwegian waters. The inventory of copepods has 
continued within HYPCOP (2020–2022), which focuses on 
copepods in the hyperbenthic marine habitats in Norwegian 

waters. Projects HYPNO (2015–2018) and NORHYDRO 
(2019–2022) have so far collected DNA samples with picto-
rial vouchers for 102 species of pelagic hydrozoans occur-
ring in Norwegian waters, with 298 barcode COI sequences 
for 84 species. NTI has also funded projects on Ctenophora 
(GooseAlien, 2016–2020) and Amphipoda (NorAmph, 
2016–2018; NorAmph2, 2019–2022).

Marine Barcode of Life (MarBOL)

The Marine Barcode of Life (MarBOL) project was a joint 
effort of the Consortium for the Barcode of Life and the Cen-
sus of Marine Life, which sought to highlight the variety of 
applications of DNA barcodes, including accelerating spe-
cies-level analysis of biodiversity and facilitating conserva-
tion efforts. Marine barcoding efforts have continued under 
the auspices of the International Barcode of Life, including 
new initiatives that seek to track species dynamics in marine 
ecosystems (Trivedi et al. 2016; Adamowicz et al. 2019).

Census of Antarctic Marine Life (CAML)

The Census of Antarctic Marine Life (CAML) was a project 
of the Census of Marine Life and was led by the Austral-
ian Antarctic Division and aimed at assessing the nature, 
distribution, and abundance of Southern Ocean biodiver-
sity. Field work took place between 2005 and 2010, and was 
based on 18 major research voyages to Antarctica and the 
Southern Ocean, mainly during the International Polar Year, 
2007–2008. A major legacy of CAML is the SCAR-Mar-
BIN (Scientific Committee on Antarctic Research Marine 
Biodiversity Network) data portal (http://​www.​scarm​arbin.​
be/), which serves data arising from CAML field projects, 

Fig. 1   Census of Marine Zooplankton online gallery of photo vouch-
ers for living specimens of marine zooplankton identified at sea 
immediately upon collection by taxonomic experts. See http://​www.​

cmarz.​org/​galle​ries.​html for species identifications. Photos by R.R. 
Hopcroft and C. Clarke (University Alaska Fairbanks) and L.P. 
Madin (Woods Hole Oceanographic Institution)

http://www.boldsystems.org/
http://www.scarmarbin.be/
http://www.scarmarbin.be/
http://www.cmarz.org/galleries.html
http://www.cmarz.org/galleries.html
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including the barcode sequences for Antarctic species, and 
creates related data storage, analysis, and visualization tools 
(DeBroyer and Danis 2011).

Arctic Ocean Diversity (ArcOD)

The Arctic Ocean Diversity (ArcOD; http://​www.​arcod​iv.​
org/) project was one of the first efforts to synthesize basic 
biodiversity inventories and consolidate datasets in the 
Arctic; it also embraced the early promise of barcoding 
(Gradinger et al. 2010). ArcOD was led from the University 
of Alaska Fairbanks and was one of the Census of Marine 
Life field projects working in conjunction with the Barcode 
of Life Database (BOLD) during 2000–2010. DNA barcod-
ing efforts resulted in published COI sequences for speci-
mens of 41 of the more prominent species across 8 major 
zooplankton groups (Bucklin et al. 2010a). Over 400 benthic 
invertebrate taxa, many with meroplanktonic larval stages, 
were also barcoded (Hardy et al. 2011).

Barcodes of Marine Zooplankton in China (BoMZC)

A comprehensive multi-gene barcode database comprising 
key marine zooplankton species in Chinese coastal regions 
was the primary goal of the Barcodes of Marine Zooplank-
ton in China (BoMZC) project. Zooplankton samples were 

collected from inshore regions along mainland China from 
Bohai Bay to the South China Sea (Fig. 2). When the project 
ended in 2018, COI barcodes had been generated for 462 
species representing 10 major taxonomic groups of marine 
zooplankton.

MetaZooGene Barcode Atlas and Database

Description and purpose

The MetaZooGene Barcode Atlas and Database (MZGdb; 
https://​metaz​oogene.​org/​MZGdb) was created to provide 
advanced searching and reporting functions to the existing 
content of the GenBank and BOLD databases. For exam-
ple, a zooplankton researcher wants to know what species of 
marine copepods are commonly found in the North Atlan-
tic region, which of these already have COI barcodes, and 
which species do not. This question cannot be answered with 
GenBank or BOLD, because these databases only contain 
the species names of already barcoded species (not compre-
hensive lists of all known species), and they do not provide 
searching options for geographic regions or marine/freshwa-
ter/terrestrial classifications. At best, they can return a list of 
species with COI barcodes that were collected anywhere in 

Fig. 2   Cruise tracks showing regions sampled during the BoMZC program. Zooplankton samples were analyzed for morphological (micro-
scopic) identification of species and DNA barcoding for COI and other gene regions

http://www.arcodiv.org/
http://www.arcodiv.org/
https://metazoogene.org/MZGdb
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the world from any environment, including oceans, rivers, 
and freshwater lakes.

The MZGdb provides graphical and statistical summa-
ries of barcoding taxonomic coverage (by class, family, and 
genus) and offers pre-compiled data files in a variety of 
common formats (e.g., paired taxonomic mapping and fasta 
sequence files formatted for the Mothur pipeline; https://​
mothur.​org; Schloss et al. 2009) containing COI sequence 
data for selected ocean regions and taxonomic groups. This 
is achieved by combining sequence data from BOLD and 
GenBank, with species observation data from the Coastal 
and Oceanic Plankton Ecology, Production, and Observation 
Database (COPEPOD) and Ocean Biodiversity Information 
System (OBIS).

The MZGdb provides information for 41 major taxonomic 
groups of marine zooplankton for the seven major oceans, 
as well as the Baltic and Mediterranean Seas. The MZGdb 
adds ancillary information and labeling to the records, and 
applies quality control to the GenBank and BOLD records 
to remove duplicates, mislabeled gene types, and possible 
errors (e.g., barcode data for a specimen collected in the 
Mediterranean Sea, but identified as a species found only in 
the Arctic Ocean).

Data sources and search methods

Data from NCBI GenBank

DNA barcode data and metadata are downloaded from NCBI 
GenBank in a two-step process. The first step uses the NCBI 
entrez E-utilities (https://​www.​ncbi.​nlm.​nih.​gov/​books/​
NBK25​499/) to request a listing of all GenBank Acces-
sions (Leray et al. 2019) for a designated taxonomic group 
or associated with a particular author. Since “zooplankton” 
fall under multiple taxonomic groups, MZGdb queries 30 
different taxonomic sub-groups to represent the zooplank-
ton assemblage. Large groups (e.g., Crustacea) are divided 
into smaller groups to speed up processing. MZGdb updates 
these lists of accession numbers monthly, and downloads 
any new or modified accessions for addition to the MZGdb 
catalog.

There are several challenges associated with the MZGdb 
data gathering process, as described above. In its earliest 
years, NCBI GenBank did not require or consistently enforce 
standard naming or field assignment in its uploaded data. 
For example, the name of the gene region sequences (e.g., 
“COI”) should be placed in the GenBank “/gene = ” field, 
but some older records instead include this in the “/prod-
uct = ” or “/notes = ” fields. This means those records will 
not be returned when using only “/gene = COI” data search 
in GenBank. Furthermore, the exact gene naming text was 
not controlled, and the mitochondrial cytochrome oxidase 
I gene has been designated using various abbreviations, 

as preferred by the author (e.g., COI, CoI, CO1, COX1, 
CO-1, Co 1). Ignoring capitalization, 85% of the MZGdb-
extracted GenBank records used “coi”, 11% used “cox1”, 
and 3% used “co1”. In all, 32 different text strings are used 
in GenBank to represent this one gene. A person search-
ing with “/gene = COI” would only get 85% of the entire 
GenBank COI data collection, while a person searching 
with “/gene = COX1” would get 11% of these data. Due to 
significant and multiple searching difficulties, MZGdb even-
tually stopped using the “/gene = ” and “/product = ” fields 
all together, and simply searched for the presence of three 
words (i.e., “dna” + “cytochrome” + “oxidase”) anywhere 
in the GenBank record. This returns more than the desired 
COI data, so additional quality control checks were used 
to remove undesired results (e.g., “COI-like” sequences, 
“unverified sequences”, and/or ITS records that contain 
these three keywords).

Data from BOLD

Data for MZGdb were also downloaded from the Barcode 
of Life Database (BOLD; Ratnasingham and Hebert 2007) 
using the BOLD API tool (http://​www.​bolds​ystems.​org/​
index.​php/​resou​rces/​api). The BOLD database regularly 
synchronizes with GenBank, and there is significant dupli-
cation with GenBank records. These duplicated records 
contain GenBank Accession Numbers, which were checked 
against the GenBank downloaded entries and removed or 
added as necessary. GenBank records were given priority 
over BOLD records, because according to the BOLD hand-
book (https://​v3.​bolds​ystems.​org/​index.​php/​resou​rces/​handb​
ook), all BOLD records are eventually submitted to Gen-
Bank. Any records unique to BOLD should therefore even-
tually be included in GenBank, and would then be removed 
as duplicates. After downloading respective GenBank and 
BOLD data to MZGdb, duplicated records from BOLD and 
GenBank are resolved (keeping the GenBank version in 
cases of duplication), and a final check is run to identify 
and remove any remaining non-COI records in the combined 
dataset (e.g., mRNA data and sequences with > 2000 bp).

Translation and verification of species names

The original species description provided in the GenBank/
BOLD sequence record is validated against the World Reg-
istry of Marine species (WoRMS, https://​www.​marin​espec​
ies.​org/). MZGdb stores the original description and also a 
secondary name field, which contains the official WoRMS 
spelling and taxonomic status (e.g., “accepted”, “unaccepted 
(synonym)”, “alternate representation”). In some cases, the 
original sequence species name contains non-taxonomic 
information (e.g. “Calanus sp. Sample-X” or “Calanus aff. 
helgolandicus”). In these cases, the species can only be 

https://mothur.org
https://mothur.org
https://www.ncbi.nlm.nih.gov/books/NBK25499/
https://www.ncbi.nlm.nih.gov/books/NBK25499/
http://www.boldsystems.org/index.php/resources/api
http://www.boldsystems.org/index.php/resources/api
https://v3.boldsystems.org/index.php/resources/handbook
https://v3.boldsystems.org/index.php/resources/handbook
https://www.marinespecies.org/
https://www.marinespecies.org/
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matched in WoRMS to the genus level (e.g., “Calanus”), so 
the secondary name field will only show the genus name, but 
the original description field will retain the full original text.

Enhanced geographic indexing and searching

With hundreds of species and thousands of sequences 
in most ocean basins, a researcher may want to limit the 
sequence data to only those species relevant to their study 
area. Considering only the georeferenced barcodes found in 
GenBank and BOLD (Fig. 3, red stars) would give a mis-
leading view of a species’ geographic coverage. This can 
be improved by adding observation data from the COPE-
POD and OBIS databases (Fig. 3, blue dots), illustrating that 
the species of interest is indeed found in additional ocean 
regions, even though georeferenced barcodes do not exist 
from these areas.

Information on the locations of all prior collections and 
observations (species, latitude, longitude) is downloaded 
from COPEPOD and OBIS and used to calculate the geo-
graphic distribution and presence by ocean for all of the 
MZGdb species. If a species is found in an ocean in at least 
three different locations, it is marked as being found in that 
ocean. This minimum of three observations was set to allow 
cryptic or rare species to be registered, while seeking to 
exclude errors in data entry (e.g., a missing ± longitude value 
that might put an observation in the wrong ocean or hemi-
sphere). These ocean assignments are then compiled into 
ocean-based species lists. Where the MZGdb has > 5600 

zooplankton species globally, only ~ 4400 of these are 
assigned to the North Atlantic, and ~ 1200 are assigned to 
the Mediterranean Sea.

A quality control measure currently in development is 
to use NCBI GenBank Basic Local Alignment Search Tool 
(BLAST; Altschul et al. 1990; https://​blast.​ncbi.​nlm.​nih.​gov/​
Blast.​cgi) to compare all available sequences for a given spe-
cies, and to evaluate sequence variation with the species and 
between closely-related congeneric species (Boratyn et al. 
2013). Findings of high levels of sequence differences and 
apparent mismatches, consistent with species misidentifica-
tion, will be reported in a notes field in the MZGdb. While 
the original GenBank/BOLD species description would 
remain intact and not be changed, this additional information 
can be used to improve the reference utility of the sequence.

MZGdb data format

The MZGdb data format is abbreviated and does not con-
tain all information from the original GenBank or BOLD 
records. The database is designed for particular applica-
tions (including file formatting for particular bioinformat-
ics pipelines), and does not seek to fully replicate or repro-
duce the entire data content of the original entries, which 
are easily accessible via the linked original GenBank and/
or BOLD records. Supplemental data fields have been added 
(e.g., MZG suggested name, QC notes, oceans-of-presence, 
marine/fresh, holoplankton/meroplankton).

Fig. 3   MZGdb Atlas map of the copepod, Neocalanus gracilis, show-
ing collection sites of identified specimens based on COPEPOD/
OBIS (blue dots) and specimens used for DNA barcode records avail-
able in GenBank or BOLD (red stars). Although N. gracilis has been 

collected in most oceans, georeferenced barcodes are available for 
only 2 locations in the Pacific Ocean. (See https://​metaz​oogene.​org/​
MZGdb)

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://metazoogene.org/MZGdb
https://metazoogene.org/MZGdb
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A possible enhancement for MZGdb would be to add 
collection information missing in the GenBank or BOLD 
entries, especially georeferencing (latitude/longitude coor-
dinates) and ideally date of collection. These additional 
metadata will allow evaluation of geographic distributions 
and identification of possible misidentification of species. 
In some cases, these metadata may be recovered from the 
GenBank record in the “/note = ” section and/or cited pub-
lications, and thus added to the MZGdb entry. In the future, 
additional data descriptors not provided by any source 
(WoRMS, OBIS, GenBank, or BOLD) may be selected for 
inclusion in the MZGdb.

Current status of DNA barcoding

The MetaZooGene Atlas and Database are designed to 
enhance access, improve quality control, and expand pos-
sible applications for COI barcodes of marine zooplankton. 
Both international programs and individual research projects 
have continued progress toward a taxonomically complete 
and geographically comprehensive reference database in 
recent years. The MZGdb searching and reporting functions, 
which yield COI barcode sequences and collection meta-
data, allow summary analysis of the current status of DNA 
barcoding for selected taxonomic groups and ocean regions, 
including assessment of completeness and identification of 
priorities for future efforts.

DNA barcoding by taxonomic group

Overview summaries are provided for selected taxonomic 
groups of marine zooplankton for which there has been 
significant recent progress in DNA barcoding. Several 
important groups of marine zooplankton are not included 
here (e.g., Ostracods, gammarid Amphipods, Mysids, Poly-
chaetes), although barcode data for species of these groups 
are included in the MZGdb database, and updated informa-
tion is available through the publicly-accessible websites.

Cnidaria

Cnidaria of the Class Anthozoa, which have planktonic 
larval stages, are known to have low COI sequence 
divergence between species (Shearer et al. 2002; Hell-
berg 2006), In contrast, medusozoan Cnidaria (Classes 
Hydrozoa, Scyphozoa, and Cubozoa) have COI distances 
between species more compatible with reliable discrimi-
nation and accurate identification of species (Huang et al. 
2008; Ortman et al. 2010; Zheng et al. 2014; Lindsay et al. 
2015). The mitochondrial genome in the Medusozoa is 
linear; in Cubozoa, it is broken into multiple chromo-
somes (Kayal et al. 2011, 2015). With the exception of 

the Subclass Trachylina, pelagic Hydrozoa possess two 
copies of COI (full and partial) at the ends of the linear 
mitochondrial chromosome (Kayal et al. 2011). Another 
issue is the presence of nuclear insertions of mitochondrial 
sequences (NUMTs), which have been confirmed among 
medusozoan Cnidaria in the benthic species, Hydra magni-
papillata (Song et al. 2013). NUMTs can potentially intro-
duce ambiguity into species identifications of planktonic 
Cnidaria, as discussed by Lindsay et al. (2015). Despite 
these complexities, COI has been analyzed for more than 
100 species and has proven to be useful for species delimi-
tation in Hydrozoa, including clades with multiple copies 
(e.g., Ortman et al. 2010; Watson and Govindarajan 2017; 
Lindsay et al. 2017; Li et al. 2018; Martell et al. 2018), and 
allows matching pelagic and benthic life history stages of 
one species (Pyataeva et al. 2016; Schuchert et al. 2017). 
However, COI primers universally targeting all hydro-
zoan clades have yet to be designed (Moura et al. 2018). 
The mitochondrial small ribosomal RNA subunit, mt16S 
rRNA, has frequently been used for Hydrozoa, since PCR 
amplification success is reported to be higher and the 
sequence provides more phylogenetic information (Zheng 
et al. 2014; Lindsay et al. 2015). While using COI, often 
in parallel with mt16S rRNA, is becoming more common-
place since its promotion as the universal barcode locus, 
publicly available mt16S rRNA sequences for Hydro-
zoa are currently more numerous than COI sequences in 
GenBank: ~ 5300 vs. 3500, respectively). For some taxa, 
COI may be the preferred barcode, since mt16S rRNA 
shows very low divergence between congeneric species for 
genera as phylogenetically diverse as Catablema (Order 
Anthoathecata) (Schuchert 2020).

It is apparent that misidentifications, due to the lack of 
taxonomic expertise and/or the presence of morphologi-
cally cryptic species, are frequent in public DNA barcode 
sequence repositories, and these records should be used 
with caution (Lindsay et al. 2015). Undamaged specimens 
of Cnidaria are required for species-level identification, and 
organisms identified as the same species have subsequently 
been assigned to different families when integrated studies 
on morphology and molecules were carried out (Lindsay 
et al. 2017). The multiple life stages of many Cnidaria have 
often been described and barcoded as separate species. Ref-
erence barcode sequences linked to vouchered specimens 
are needed to identify taxonomic errors and discrepancies, 
and to be able to confidently use DNA barcodes for spe-
cies identification. Unfortunately, securing voucher speci-
mens is not always straightforward, especially for gelatinous 
zooplankton, since specimens directly preserved in ethanol 
are generally unsuited for morphological work, while for-
malin, the preferred medium for fixation of morphological 
specimens, causes denaturation of DNA (Bucklin and Allen 
2004). For the smaller Hydrozoa, photographic vouchers 
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that carefully document key structures of specimens prior 
to fixation in ethanol may be the best available substitute 
for physical vouchers.

Ctenophora

Ctenophora remains a problematic phylum in terms of DNA 
barcoding and taxonomy in general. BOLD (https://​www.​
bolds​ystems.​org/) currently lists only 10 species of formally-
described planktonic Ctenophora as having COI barcodes 
(including data mined from GenBank), not all of which are 
publicly available, indicating a significant gap in terms of 
available reference sequences. There is also very limited data 
on intraspecific variation, with only two of these species, 
Bolinopsis infundibulum and Beroe ovata, listed with more 
than four barcode sequences > 500 bp. There currently exists 
no consensus for a suitable barcoding locus for the phylum, 
as previous molecular studies have used 18S rRNA, 28S 
rRNA, the intervening transcribed spacer regions (ITS1/2) 
and mitochondrial cytochrome b (CYTB), in addition to 
COI, with varying success (Podar et al. 2001; Bayha et al. 
2004, 2015; Simion et al. 2015).

While a few recent papers successfully used COI for 
delimitation of species in the benthic ctenophore family 
Coeloplaniidae (Alamaru et al. 2017) and the genus Beroe 
(Johansson et al. 2018), obtaining COI sequences has been 
challenging for many species, with standard primers failing 
to amplify COI sequences due to high intraspecific nucleo-
tide diversity (Schultz et al. 2020). Lack of sequenced mito-
chondrial genomes has complicated PCR primer design for 
ctenophores (Wang and Cheng 2019). To date, mitogenomes 
for 7 Ctenophora species have been sequenced: Mnemiopsis 
leidyi (Pett et al. 2011), Pleurobrachia bachei (Kohn et al. 
2012), three benthic platyctenids (Arafat et al. 2018), Beroe 
cucumis (Wang and Cheng 2019) and B. forskalii (Schultz 
et al. 2020). The mitochondrial genomes of ctenophores 
have been shown to exhibit rapid evolutionary rates, and to 
be reduced and highly derived compared to other Metazoa 
(Pett et al. 2011; Kohn et al. 2012; Lavrov and Pett 2016; 
Arafat et al. 2018; Wang and Cheng 2019; Schultz et al. 
2020).

The COI barcode region of Ctenophora has proven prob-
lematical and the traditional taxonomy of the group presents 
numerous challenges: there is a lack of taxonomic experts, 
identification literature is sparse, and the phylum surely 
includes considerable hidden diversity, with many unde-
scribed species (Haddock 2004). Many ctenophore species 
are exceedingly fragile, and can only be successfully col-
lected for morphological studies by divers or, in the case of 
deep-water species, by Remotely Operated Vehicles (ROVs). 
Preserving physical voucher specimens is nearly impossi-
ble, since most ctenophores will rapidly disintegrate in both 
ethanol and formalin (Adams et al. 1976), as well as other 

fixatives. Consequently, type material is rarely available for 
study (e.g., Gershwin et al. 2010). Detailed, ideally in situ, 
photographic or video documentation of live ctenophores, 
together with detailed descriptions and illustrations, provide 
the most feasible way to document morphological diversity.

Copepoda

Planktonic copepods are thought to be the most abundant 
metazoans on Earth and one of the most-studied taxonomic 
groups of marine zooplankton. As a group, copepods are 
both taxonomically and ecologically diverse; they frequently 
dominate zooplankton communities. Planktonic copepods 
currently comprise > 2600 species of > 340 genera, which 
are assigned to 8 orders: Calanoida, Platycopioida, Mis-
ophrioida, Mormonilloida, Cyclopoida, Siphonostoma-
toida, Harpacticoida, and Monstrilloida (Razouls et  al. 
2005–2020). The MZGdb includes 2402 species, including 
only “accepted” taxonomic names status in WoRMS. The 
Order Calanoida includes the highest number of species 
(955), followed by Harpacticoida (599), Cyclopoida (509), 
Siphostomatoida (289), Canuelloida (22), Monstrilloida (19) 
and Mormonilloida (3 species).

Species identification and discrimination of copepods 
using DNA sequences has used both mt16S rRNA (Goetze, 
2003) and COI (Bucklin et al. 2010a, b; Laakmann et al. 
2013; Blanco-Bercial et al. 2014). Analyses have used vari-
ous PCR primers and protocols for COI (Folmer et al. 1994; 
Simon et al. 1994), including development of copepod-
specific primers (Bucklin et al. 2010c). DNA barcoding 
has revealed hidden diversity and resolved cryptic species 
(Goetze 2003; Cornils and Held 2014; Goetze et al. 2016; 
Bode et al. 2017).

Copepods are one of the best-studied groups of marine 
zooplankton using integrative morphological and molec-
ular approaches. COI barcode reference sequences are 
available for many—if not most—of the more abundant 
and/or ecologically important species from coastal ocean 
areas, as well as surface layers (epipelagic zone) of the 
open ocean. Additional effort is needed for taxonomically 
challenging taxa, including species of the genus Acartia 
(Figueroa et al. 2020) and family Paracalanidae (Cornils 
and Held 2014; Moon et al. 2010), as well as representa-
tives of bathy- and abyssopelagic taxa, which remain 
under-sampled. Rapid progress is being made with COI 
barcoding of copepods. A comprehensive analysis reported 
1381 COI barcode sequences for 195 marine copepods in 
2014 (Blanco-Bercial et al. 2014), while the compilation 
of marine pelagic copepod barcodes in the MZGdb now 
includes 12,155 sequences for 752 species, or 31% of the 
total of 2401 valid copepod species (Fig. 4). The highest 
numbers of copepod species are recorded for the North 
Atlantic (975 species), Indian Ocean (911 species) and 

https://www.boldsystems.org/
https://www.boldsystems.org/
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the North and South Pacific (783 and 625 species, respec-
tively), while lower numbers are documented for the South 
Atlantic (388 species), the Southern Ocean (189 species) 
and the Arctic (161 species). Regarding the percentage 
of species for which DNA barcodes are present, the Arc-
tic and South Atlantic show the highest proportions of 
barcoded species with > 2/3 and > 1/2 of the documented 
species, respectively. In the Indian Ocean, DNA barcodes 
exist for < 1/3 of the species. The order Calanoida has the 

highest species diversity and the most species with a COI 
barcode (405 species; 42% barcoded, Fig. 5). Siphonos-
tomatoida make up the second largest group with respect 
to barcoded species (115 species, 39% barcoded), followed 
by the Harpacticoida (110 species, 18%), Cyclopoida (95 
species, 18%), Monstrilloida (11 species, 57% barcoded), 
Canuelloida (3 species, 13%) and Mormonilloida (2 spe-
cies, 66% barcoded; Fig. 5). 

Fig. 4   Copepod species with 
DNA barcodes. a Entire ocean; 
b–h by ocean region. Pie charts 
show proportions of barcoded 
species: total (left); by order 
(right)
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Hyperiid amphipoda

Hyperiid amphipods are an exclusively holoplanktonic 
group of marine Crustacea, which serve as important prey 
in pelagic food webs for whales, planktivorous fish and 
seabirds, and as commensals and parasitoids of gelatinous 
zooplankton (Bocher et al. 2001; Harbison et al. 1977). 
Despite their conspicuous presence in zooplankton samples 
worldwide and their striking morphological adaptations to 
pelagic life, the knowledge of species diversity of hyperi-
ids is very incomplete. The suborder Hyperiidea includes 
two infraorders, Physosomata and Physocephalata, which 
together contain ~ 300 species (Gasca et al. 2012; Hurt et al. 
2013). The majority of species diversity is contained within 
the Physocephalata, with approximately 65% of extant spe-
cies within the 23 families of this infraorder according to the 
World Register of Marine Species (WoRMS Editorial Board 
2021). The MZGdb contains 643 COI barcodes represent-
ing 66 and 8 species of Physocephalata and Physosomata, 
respectively. However, geographic locations associated with 
DNA barcodes were accessible for only 16 species. The 

absence of collection information (latitude and longitude) 
in GenBank or BOLD database entries, despite inclusion 
in the cited publication (e.g., Hurt et al. 2013), is entirely 
usual, especially for less recent submissions. Among bar-
code records with collection locations, the majority of speci-
mens were sampled from coastal regions, and many open 
ocean and deep-water species have not yet been added to 
reference databases.

Euphausiacea

The marine crustacean Order Euphausiacea, known as krill, 
includes 87 described species, many of which have bioge-
ographic ranges spanning multiple ocean basins (Brinton 
et al. 1999). The MZGdb includes a total of 2567 COI bar-
code sequences for 66 species. The widespread distributions 
of many euphausiid species, with the associated possibili-
ties of genetic differentiation of geographic populations and 
eventual speciation, present significant challenges for reli-
able species identification based on COI barcodes. The COI 
barcode region has proven to be a valuable tool for species 

Fig. 5   Maximum likelihood tree of COI barcodes from MZGdb. Numbers of barcoded species are shown in parentheses; colors reflect different 
copepod orders; green branches indicate taxonomic uncertainties or possible errors
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identification and discrimination of euphausiid species, and 
also for evaluation of the taxonomic significance of variation 
among geographic populations (Bucklin et al. 2007). Wiebe 
et al. (2016) analyzed COI barcodes for specimens of Sty-
locheiron abbreviatum and S. affine collected in the Red Sea. 
Comparison with COI barcodes for these species across their 
multi-ocean distributions indicated that Red Sea popula-
tions of S. affine may represent a cryptic species, while COI 
showed high variability, but no significant divergence (or 
cladogenesis) for S. abbreviatum (Wiebe et al. 2016; Fig. 6). 

These case studies indicate the need for COI barcoding 
of all species of euphausiids, including analysis of samples 

collected throughout each species’ geographic range. A taxo-
nomically complete and geographically comprehensive ref-
erence barcode database will provide an invaluable resource 
for accurate species identification, and detection of cryptic 
and novel species.

Gastropoda

Although most marine gastropods are benthic, of which 
the majority have meroplanktonic larvae, two groups are 
holoplanktonic and represent independent colonizations of 
the pelagic zone. These include the Order Pteropoda and 

Fig. 6   MetaZooGene Barcode Atlas maps for the euphausiids Sty-
locheiron abbreviatum (top) and S. affine (bottom). The MZGdb Atlas 
records collection locations for specimens that were morphologically 

identified (blue dots) and barcoded (red stars). See https://​metaz​
oogene.​org/​MZGdb

https://metazoogene.org/MZGdb
https://metazoogene.org/MZGdb
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the Superfamily Pterotracheoidea (commonly referred to as 
heteropods) within the Order Littorinimorpha. Both groups 
are important members of the marine zooplankton assem-
blage and share the key characteristic of producing shells 
composed of aragonite, a naturally occurring form of cal-
cium carbonate (CaCO3) that is more soluble than calcite. 
They are thus considered to be vulnerable to ocean acidifica-
tion, but the deposition of their shells in marine sediments 
has also provided a unique and invaluable fossil record of 
the biodiversity of pelagic ecosystems. The fossil record 
makes these holoplanktonic gastropods particularly useful 
for studying evolutionary processes in metazoan plankton 
in the global ocean (Peijnenburg et al. 2020; Wall-Palmer 
et al. 2020).

Pteropods comprise three suborders: Euthecosomata, 
Pseudothecosomata, and Gymnosomata (Bouchet et  al. 
2017), with a total of 71, 23, and 54 extant species recorded, 
respectively, in WoRMS. DNA barcoding of described spe-
cies of the fully-shelled Euthecosomata have usually used 
the COI barcode region gene (e.g., Jennings et al. 2010a; 
Corse et al. 2013; Burridge et al. 2017). The MZGdb cur-
rently contains 1719 sequences representing 50 pteropod 
species sampled worldwide, with the best sampling cover-
age in the Atlantic Ocean. However, the Pseudothecosomata, 
which are deeper-dwelling and less-frequently sampled, 
and the Gymnosomata, which lack shells as adults and are 
referred to as ’sea angels’, remain poorly characterized and 
under represented in the database. Only 8 out of 19 genera of 
Gymnosomata and only 6 out of 23 species of Pseudotheco-
somata are represented, and species identifications are often 
doubtful. These groups should be a priority for future DNA 
barcoding efforts, although challenges include lack of speci-
men vouchers due to poor preservation in ethanol. Recent 
studies have demonstrated the power of integrated molecular 
and morphometric analyses for these groups (Burridge et al. 
2015, 2019; Shimizu et al. 2018; Choo et al. 2020). Discov-
ery of new species and increased estimates of global diver-
sity can be expected, especially for species with widespread 
and multi-ocean distributions, which may be expected to 
reveal evidence of cryptic speciation.

The Superfamily Pterotracheoidea includes carnivorous 
holoplanktonic Gastropoda, with current records for a total 
of 38 recognized species. Although less abundant than the 
Pteropoda, the Pterotracheoidea are frequently sampled 
throughout all ocean basins, with distributions ranging from 
temperate to tropical regions (Wall-Palmer et al. 2018). The 
Carinariidae and Pterotracheidae, including a total of 14 
species, are larger-bodied forms that are nearly lacking in 
barcode data, with only 14 COI sequences available for 4 
species. In contrast, a taxonomically- and geographically-
extensive COI reference dataset is available for the family 
Atlantidae, with 668 COI sequences, including all 24 species 
(Wall-Palmer et al. 2018, 2020). The COI barcode region 

has proven to be a reliable marker of species identification 
for the Atlantidae, and has also supported the discovery of 
new species and recognition of likely cryptic species (Wall-
Palmer et al. 2018). Morphological identification of this 
group of Gastropoda relies upon analysis of their minute 
larval shells (see https://​www.​plank​tonic.​org/) and loss of 
taxonomic expertise has contributed to the lack of recent 
research on this group.

Shelled holoplanktonic gastropods provide useful and 
reliable indicators of ongoing processes associated with 
global climate change, including ocean acidification, and 
also provide an evolutionary record of long-term climatic 
variation in the oceans. COI barcodes provide an invalu-
able tool for accurate and consistent identification of species. 
These COI barcodes and the global resource of the MZGdb 
will ensure that these groups can be reliably identified, 
recorded in reference databases, and included in a variety 
of future studies.

Chaetognatha

The Chaetognatha, commonly known as arrow worms, is 
a marine phylum containing ~ 150 species, of which the 
majority are holoplanktonic (Pierrot-Bults 2017). In pelagic 
waters, Chaetognatha are primary predators of copepods 
and generally make up a substantial proportion of biomass. 
Chaetognath species can be found from coastal waters to the 
open ocean, and from the surface to the deep sea, although 
quantitative data on distribution and abundance in the global 
ocean are scarce. Because of their simple body plan, lack 
of clear morphological characters, and soft body, Chaetog-
natha are not easily identified to species level, especially in 
preserved samples. For barcoding reference databases there-
fore, specimens should be identified by taxonomic experts 
while still alive and/or specimens preserved in 4% formal-
dehyde should be paired with voucher specimens for DNA 
barcoding.

There has been considerable debate about the systematics 
within the Chaetognatha, but the phylum is classified into 
two main orders: Aphragmophora and Phragmophora, for 
which WoRMS currently lists 181 and 127 accepted spe-
cies names, respectively. However, many of these species 
have only been observed once and remain to be verified. The 
majority of species are contained in the family Sagittidae of 
the Aphragmophora, which comprises 12 genera and 174 
species. The MZGdb contains 1117 COI barcodes represent-
ing 29 species. The primary geographic focus of studies of 
Chaetognatha are the Atlantic and Arctic Oceans, where 22 
species of Aphragmophora (including 20 species of Sagitti-
dae) have been collected. Hence, there remain large gaps in 
the reference database for Chaetognatha.

An additional complication is that previous studies exam-
ining mitochondrial DNA variation within and between 

https://www.planktonic.org/
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Chaetognatha species have uncovered unusually high lev-
els of diversity, often combined with significant population 
genetic structuring and potential cryptic speciation (Peijnen-
burg et al. 2004, 2006; Jennings et al. 2010b; Miyamoto 
et al. 2012; Kulagin et al. 2014). Analysis of entire mito-
chondrial genomes combined with nuclear genetic markers, 
however, led Marlétaz et al. (2017) to conclude that Chae-
tognatha have unusual patterns of mitochondrial evolution 
and extreme levels of mitochondrial diversity can be present 
within natural populations of single species. Hence, valid 
reference barcode databases for Chaetognatha species should 
include nuclear, as well as mitochondrial, genetic markers. 
Best practices also include that specimens preserved in for-
maldehyde, matched with voucher specimens used for bar-
coding, should be archived for future examination.

Pelagic tunicata

A large portion of the undiscovered biodiversity of marine 
mesozooplankton may lie within the pelagic Tunicata, pri-
marily the Appendicularia (also called Larvacea) and the 
Thaliacea. Larvaceans are holoplanktonic tunicates compos-
ing three families: Oikopleuridae, Fritillaridae, and Kowa-
levskiidae. To date, only 72 species have been described, 
with most of the diversity (38 species) within the Oikopleu-
ridae. Accurate and detailed taxonomic characterization of 
larvaceans has proven difficult, if not impossible, due to 
damage to specimens during routine net sampling, which 
has markedly limited our understanding of the true biodiver-
sity of these pelagic tunicates (Hopcroft 2005), despite our 
appreciation for their importance in the deep ocean (Robi-
son et al. 2010). The Thaliacea currently contain 75 species 
within 7 families, and while most surface-dwelling species 
are relatively robust and well known, deeper-dwelling spe-
cies have only begun to be discovered (Robison et al. 2005a, 
b).

Currently, COI barcodes exist for only 6 species of Lar-
vacea (8% of the described diversity). This lack of COI bar-
codes is partly a consequence of the difficulty of accurate 
species identifications of imperfect or damaged specimens 
for COI barcoding. Additionally, usual PCR primers for 
the COI barcode region (Folmer et al. 1994; Geller et al. 
2013) have proven to be unreliable in targeting and ampli-
fying COI for Larvacea (Sherlock et al. 2017) and Thalicea 
(Govindarajan et al. 2011). Progress has been made towards 
COI barcodes with the tunicate primer pair (Hirose et al. 
2009) that have successfully amplified COI from the giant 
larvacean, Bathochordaeus mcnutti (Sherlock et al. 2017). 
And nuclear 18S rRNA primers have been used success-
fully (Tsagkogeorga et al. 2009; Govindarajan et al. 2011). 
These taxonomic and molecular issues have led to pelagic 
tunicates being vastly under represented in DNA reference 
databases and hinders the ability of metabarcoding analyses 

to accurately characterize ecosystem diversity. Therefore, 
a considerable amount of attention is still needed by taxo-
nomic experts and molecular ecologists to help expand and 
resolve tunicate biodiversity.

DNA barcoding by ocean region

Patterns of zooplankton diversity vary markedly among the 
many distinct and diverse geographic regions of the global 
ocean. Characterization of species diversity of the many 
taxonomic groups of marine zooplankton by ocean region 
is a key foundation for understanding the relationships to 
environmental conditions and recognizing the impacts of 
human activities, including climate change.

North Atlantic Ocean and regional seas

For many decades, marine research and fisheries manage-
ment in the North Atlantic Ocean has been promoted by the 
two international governmental organizations: International 
Council for the Exploration of the Sea (ICES) and North 
Atlantic Fisheries Organization (NAFO). For more than 
100 years, data on oceanography, plankton, and fish have 
been collected, allowing the identification and analysis of 
abiotic and biotic changes in the ICES/NAFO areas over this 
long time period (Fig. 7). In both areas, there are more than 
62 monitoring sites, providing high spatial and temporal res-
olution zooplankton data based on 40 Continuous Plankton 
Recorder (CPR) standard areas (O’Brien et al. 2013). These 
long-term data give detailed information on the zooplankton 
species and the zooplankton community change over time 
in the eastern North Atlantic (Greve et al. 2004; Beaugrand 
2005; Beaugrand et al. 2009, 2014; Pitois et al. 2009; Eloire 
et al. 2010) and western North Atlantic (Pershing et al. 2005; 
Kane 2007; Johnson et al. 2011). 

The MZGdb now gathers available information on zoo-
plankton distribution, and also provides collection metadata 
and DNA barcode sequences for zooplankton throughout 
the ICES North Atlantic Region, with additional detail from 
adjacent ocean regions, including the Baltic and Mediterra-
nean Seas. For the entire area, DNA barcodes exist for 32% 
of the > 8600 species, including 38% of > 3200 crustacean 
species and 29% of > 5300 non-crustacean species. Half of 
these DNA barcodes have been collected from specimens 
sampled in this area. Considering only the eastern oceanic 
part (which together with the Baltic Sea is defined as the 
ICES ecoregion), these proportions are somewhat higher.

The Copepoda, Amphipoda, and Decapoda are the groups 
with highest species numbers among crustacean zooplank-
ton, comprising 2/3 of all species. The same is true for some 
non-crustacean zooplankton groups, including Polychaeta, 
Mollusca, and Cnidaria. A number of studies yielding DNA 
barcodes for zooplankton groups have focused on particular 
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species (Bucklin et al. 2000; Castellani et al. 2011) or spe-
cific genera (Aarbakke et al. 2011, 2014; Cornils and Held 
2014).

The North Sea is a particularly well-studied region within 
the ICES area, with boundaries defined by the English Chan-
nel to the southwest, the southern boundary of the Kattegatt 
to the east, and the Shetlands to the north. The North Sea 
zooplankton community consists of neritic species with a 
high seasonal proportion of meroplankton (Reid et al. 2003; 
Alheit et al. 2005) and an occasional and temporary influx of 
oceanic species. In total, > 3200 species have been recorded 
for the North Sea, of which > 1300 species (41%) have asso-
ciated COI barcodes, with a smaller proportion of species 
(32%) have barcodes for specimens collected in the region. 
DNA barcodes for specimens collected from the North Sea 
are available for Copepoda (Laakmann et al. 2013; Cornils 
and Wend-Heckmann 2015) and other Crustacea (Raupach 
et al. 2015), as well as Cnidaria (Holst and Laakmann 2014; 
Laakmann and Holst 2014). Reliable identification of mero-
plankton, especially in coastal areas, requires a comprehen-
sive COI reference database for both benthic and pelagic 
organisms, which is available for Crustacea (Raupach et al. 
2015), Mollusca (Barco et al. 2016) and Echinodermata 
(Laakmann et al. 2016). Considering mero- and holozoo-
plankton together, COI barcodes are available for ~ 50% of 
the > 900 species of Crustacea in the North Sea zooplank-
ton assemblage, which is dominated by Amphipoda and 
Copepoda.

The Baltic Sea is the semi-enclosed, marginal sea of the 
North Atlantic Ocean, with a short geological history. It 
is also one of the largest brackish waterbodies on Earth, 
with salinity and temperature gradients decreasing from 
southwest to northeast. The zooplankton assemblage of the 

Baltic Sea includes marine, brackish and freshwater species 
(Schiewer 2008), so assigning certain species to this area 
in MZGdb Atlas is challenging. Including zooplankton of 
all size classes and all hydrographic zones, the Baltic Sea 
assemblage comprises a total of 1199 species, with 1031 
occurring in marine waters (the open Baltic) and 168 spe-
cies in associated estuaries. No species are considered to 
be endemic to the region, although microzooplankton of 
the open Baltic are not well-studied (Ojaveer et al. 2010). 
The mesozooplankton from the region are relatively well 
known, based on monitoring programs coordinated by the 
Helsinki Commission (HELCOM; https://​helcom.​fi/) and 
research institutions in the Baltic countries (Hernroth and 
Ackefors 1979; Viitasalo et al. 1995; Dippner et al. 2001; 
Díaz-Gil et al. 2014; Musialik-Koszarowska et al. 2019). 
Despite knowledge of the morphological taxonomy of the 
zooplankton assemblage, relatively few COI barcodes are 
available for species based on specimens collected from 
regions of the Baltic Sea.

Arctic Ocean

The Arctic Ocean is described as having low pelagic biodi-
versity when compared to other major ocean basins of the 
global ocean, considering only holozooplankton (Kosobok-
ova et al. 2011; Kosobokova 2012; Halsband et al. 2020). 
Approximately 300–350 species of holozooplankton have 
been described and/or recorded across the Arctic Ocean 
(Brodsky 1967; Kosobokova et al. 1998, 2011; Sirenko 
et al. 1996; Sirenko 2001; Ershova et al. 2015; Ershova 
and Kosobokova 2019), including Arctic resident species 
and expatriates from both North Pacific and North Atlan-
tic Oceans. However, the Arctic Ocean is roughly half 

Fig. 7   ICES and NAFO areas 
used for monitoring and eco-
system assessments, includ-
ing sampling of zooplankton. 
Figure from Wiebe et al. (2012) 
used by permission

https://helcom.fi/
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continental shelf and half basin (Wassmann et al. 2020; 
Bluhm et al. 2015), and within its vast shallow-water shelf 
limits, meroplankton make a huge seasonal contribution to 
diversity (Weydmann-Zwolicka et al. 2021). There are prob-
ably more species in this assemblage than holozooplankton, 
but meroplankton are not well-characterized. Among highly 
diverse benthic taxa, e.g., Polychaeta and Mollusca, which 
species have planktonic larvae is largely unknown. Including 
both holo- and meroplankton, the total diversity may reach 
700–900 species in the Arctic Ocean.

Currently, 84% of the holozooplankton species reported 
from the Arctic Ocean have been barcoded, which is among 
the highest proportions among major ocean basins. Sev-
eral large-scale programs have focused on COI barcoding 
of holozooplankton, including the Census of Marine Zoo-
plankton (CMarZ; Bucklin et al. 2010b) and Arctic Ocean 
Diversity (ArcOD; Gradinger et al. 2010). Additional efforts 
have included Arctic samples in focused analysis of particu-
lar taxonomic groups (Hunt et al. 2010; Nigro et al. 2016; 
Questel et al. 2016, 2021; DeHart et al. 2020; Kolbasova 
et al. 2020). Extensive collections of zooplankton for taxo-
nomic diversity and molecular studies were carried out in 
all four deep basins of the Arctic Ocean during 2005–2019. 
Concerted efforts by expert morphological taxonomists and 
geneticists have resulted in a COI barcode reference database 
specific to the Arctic Ocean, which has proven beneficial for 
obtaining accurate species-level identifications and enhanc-
ing the detection of ecosystem biodiversity in metabarcoding 
analyses (Questel et al. 2021).

The deep basins of the Arctic Ocean certainly harbor 
additional zooplankton species that await discovery and 
description, and eventual DNA barcoding. Much of what 
is known about Arctic zooplankton diversity has come 
from net-based collections during periods of low or no ice 
cover, due to difficulties in collecting during winter condi-
tions, although a number of studies have also characterized 
the zooplankton assemblage during seasonal and multi-
year ice cover (Mumm 1993; Harding 1966; Sirenko et al. 
1996; Kosobokova et al. 1998, 2011; Auel and Hagen 2002; 
Kosobokova 2012; Questel et al. 2013; Smoot and Hopcroft 
2017a, Smoot and Hopcroft 2017b). As the Arctic sea ice 
cover has degraded (Hanna et al. 2021), both the lesser geo-
graphic extent and reduction in sea ice thickness, as well 
as the increasing number of ice-free days, are allowing 
continued oceanographic exploration in previously inac-
cessible regions. With the added use of tools (e.g., ROVs) 
capable of video and photographic observations, with tar-
geted organismal collections, as well as integrated morpho-
logical and molecular approaches to species identification, 
our understanding of the biodiversity of Arctic zooplankton 
is becoming more refined. This is particularly true for the 
soft-bodied gelatinous zooplankton groups (i.e., Ctenophora, 
Hydrozoa, Scyphozoa, and Larvacea), and organisms found 

in the deepest regions of the Arctic Ocean, including spe-
cific near-bottom habitats (Andronov and Kosobokova 2011; 
Aarbakke et al. 2017; Weydmann et al. 2017; Walczyńska 
et al. 2019; Kolbasova et al. 2020).

North Pacific Ocean

Continental shelf regions of the eastern North Pacific have 
been sampled regularly for many years, with collections 
from surface waters (top 200 m). For many years, several 
programs have carried out time-series monitoring efforts 
that include preserving zooplankton samples in alcohol for 
genetic analysis; these well-sampled areas include Sub-Arc-
tic regions off Vancouver Island, northern Gulf of Alaska, 
and the Bering Sea, as well as throughout the California 
Current System. The COI barcoding efforts based on the 
resulting samples have focused on particular taxonomic 
groups (e.g., Questel et al. 2016; Nigro et al. 2016), although 
new efforts are focusing on community analyses using 
metabarcoding. Notably, only a few studies have sampled 
the deep sea; one study carried out routine sampling down 
to 1000 m at Ocean Station Papa, off the coast of British 
Columbia (Mackas et al. 1998). Additional studies focused 
on characterizing the calanoid copepod assemblage of the 
North Pacific, sampling from 1000–4000 m (Yamaguchi 
et al. 2002, 2015; Homma and Yamaguchi 2010; Homma 
et al. 2011).

Time-series monitoring is continuing along the Seward 
Line in the northern Gulf of Alaska and within the fjord 
ecosystem of Prince William Sound. These field programs 
are providing samples for integrated morphological and 
molecular analysis, which will yield COI barcodes for addi-
tional species of zooplankton and likely result in discovery 
of undescribed species and new records of species distri-
butions in the North Pacific. The growing reference COI 
barcode database will be vital for population genetic studies 
and metabarcoding analyses to further characterize diversity 
of the zooplankton assemblage of the North Pacific Ocean.

In the western North Pacific Ocean, the Barcodes of Marine 
Zooplankton in China (BoMZC) project made major strides 
toward the goal of a comprehensive COI barcode reference 
database. BoMZC generated > 3700 barcodes for 462 zoo-
plankton species based on > 150 samples collected during 
cruises in 2015–2019 (Fig. 2), including many stations in the 
deep ocean with net tows to 1000 m. This progress can be 
considered with reference to a Checklist of Marine Biota of 
China Seas, which recorded ~ 2000 species of holozooplankton 
in the western North Pacific Ocean (Liu 2008). There are still 
significant gaps in knowledge of zooplankton diversity in the 
region, especially south of the Changjiang River, China. Only 
60% of the species could be assigned to species from collec-
tions during a 2020 biodiversity survey of zooplankton in the 
North China Sea based on metabarcoding of environmental 
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DNA (eDNA). Half of the unidentified COI sequences showed 
low similarity (< 85%) to any sequences in available reference 
databases, including NCBI GenBank. Continuing efforts are 
needed to fill the gaps and build a comprehensive and com-
plete barcode database, especially for small-sized and gelati-
nous groups (e.g., Ctenophora and Tunicata) and for deep-sea 
communities, where preliminary studies have suggested the 
presence of cryptic species in different depth zones.

Southern Ocean

Knowledge of pelagic diversity differs among regions of the 
Southern Ocean, due primarily to logistical difficulties of 
sampling. The Antarctic Peninsula and continental shelf are 
better sampled and thus have more records of valid species. 
Relative numbers of zooplankton species with georeferenced 
COI barcode sequences in GenBank or BOLD differ mark-
edly among taxonomic groups. The Southern Ocean presents 
challenges for designation of species diversity in the MZGdb, 
which currently indicates COI barcode records for Crustacea 
as follows: for planktonic Copepoda, 60 of 139 valid species 
of Calanoida and 9 of 32 species of Cyclopoida; for 10 of 13 
species of Euphausiacea and all 8 species of Ostracoda. Bar-
code sequence records are also available for 2 of 5 species of 
Chaetognatha, 8 of 10 Pteropoda (Gastropoda), and 35 of 108 
Tunicata species. For Cnidaria, 30 of 179 species of Hydrozoa 
and 3 species of Scyphozoa are barcoded. A number of stud-
ies have used integrative morphological and molecular meth-
ods to examine diversity in the Southern Ocean of selected 
zooplankton groups, including Copepoda (Bucklin and Frost 
2009; Laakmann et al. 2012), Ostracoda (Nigro et al. 2016), 
Amphipoda (Havermans et al. 2011), Euphausiacea (Jarman 
et al. 2000; Goodall-Copestake et al. 2010); Pteropoda (Jen-
nings et al. 2010a; Hunt et al. 2010; Sromek et al. 2015; Haver-
mans et al. 2019), and Chaetognatha (Jennings et al. 2010b; 
Kulagin et al. 2014).

The existing COI barcodes provide a foundation for the 
goal of determining barcodes for all species of the Antarc-
tic zooplankton assemblage (Cheng et al. 2013). Based on 
available COI barcode data, Deagle et al. (2017) found that 
metabarcoding increased the number of species identified 
and usually detected more species than microscopic analysis 
of samples collected during Continuous Plankton Recorder 
(CPR) Surveys along transects south of Tasmania, although 
the prevalence of DNA from large plankton (e.g., krill) some-
times masked the presence of smaller species (e.g., copepods).

Priorities for the future

Need for morphological taxonomy

A key issue to ensure continued progress toward realizing 
the promise of DNA barcoding as a universal tool for analy-
sis of pelagic biodiversity is the continuing need for morpho-
logical taxonomic identifications by experts. Also key is the 
retention of the voucher specimens that have been identified, 
including those subsequently sequenced (see Cornils 2015), 
and photographs of the specimen before preservation and/
or after preservation, focusing on diagnostic morphological 
characteristics. Complete and careful coordination between 
morphological and molecular taxonomic approaches is 
essential to implement the best-practices of “gold-standard” 
DNA barcoding or integrative taxonomy (Dayrat 2005). 
Support for the integrative taxonomic approach for DNA 
barcoding is widespread (e.g., DeSalle 2006; Will et al. 
2005; Pinheiro et al. 2019), but not universal. This issue is 
particularly important for identification of specimens used 
for the development of DNA sequence reference databases, 
which can provide a solid foundation for accurate identifica-
tion of species based solely on COI barcodes. DNA barcode 
sequence divergence “thresholds” or haplotype frequencies 
are frequently considered to provide evidence of cryptic 
speciation, but there is continuing and widespread concern 
about the use of DNA sequence data as a sole basis for the 
description of new species (e.g., DeSalle 2006).

Priorities for DNA barcoding and metabarcoding

The Cnidaria and Ctenophora are taxonomic groups that, as 
a whole, are often missed or ignored by routine plankton sur-
veys using nets and morphological identification, and utiliz-
ing molecular methods could provide increased data on their 
diversity and distributions (Hosia et al. 2017; Leduc et al. 
2019; Schroeder et al. 2020). Molecular methods can also 
improve our understanding of the trophic role of gelatinous 
zooplankton. Whereas predation on gelatinous zooplankton 
often goes unnoticed by traditional diet studies, due to rapid 
digestion and lack of hard body parts, DNA based methods 
can reliably confirm the presence of gelatinous prey in gut 
contents or feces of predators (Sousa et al. 2016; McInnes 
et al. 2017; Ayala et al. 2018; Hays et al. 2018). However, 
the required comprehensive and reliable reference librar-
ies, as well as universal sequencing protocols applicable for 
these groups, are still wanting, in particular for Ctenophora.

Deep-sea communities are poorly known in most ocean 
regions. Specimens of most taxonomic groups, particularly 
the more fragile forms, do not survive collection in nets and 
trawls with hours-long deployments. ROVs have proven use-
ful for assessing deep-sea zooplankton of diverse taxonomic 
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groups (Raskoff et al. 2010; Robison et al. 2010; Hidaka 
et al 2021), but are limited by the number of specimens col-
lected during a single dive. Modified deployments, including 
nets with finer mesh and large capture devices, may improve 
the success of collection of fragile, especially gelatinous, 
zooplankton in suitable condition for both morphological 
and molecular analysis (Wiebe et al. 2010). Such advances 
may improve species inventories, allow descriptions of new 
species, and provide material suitable for DNA barcoding 
species found in the deep ocean zooplankton assemblages.

DNA metabarcoding analysis of the diversity of marine 
zooplankton has been carried out using a variety of marker 
gene regions, including COI (Hirai et al. 2015; Yang et al. 
2017; Djurhuus et al. 2018), nuclear 18S rRNA (Bucklin 
et al. 2019; Blanco-Bercial 2020), and frequently multiple 
gene regions used in combination (Sommer et al. 2017; 
Hirai et al. 2020; Questel et al. 2021). Classification of the 
resulting sequences for any gene requires a taxonomically-
comprehensive and globally-extensive reference database 
of sequences determined from morphologically identi-
fied specimens, ideally with complete collection metadata 
(georeferencing). Efforts are currently underway to include 
additional genes used for metabarcoding analysis of marine 
zooplankton in the MetaZooGene database (Todd O’Brien, 
NOAA Fisheries, pers. comm.), providing data and tools 
for targeted searches by taxonomic groups and geographic 
regions, and thereby facilitating creation of custom data-
bases for particular biodiversity research, assessment, and 
management needs.

Identifying and correcting errors and quality control

After the automatic curation of the MetaZooGene database, 
such as removing “COI-like” sequences, a phylogenetic 
analysis of the 11,000 sequences of Copepoda revealed 
that the database still includes sequences that are wrongly 
assigned to species (Fig. 5). These errors in species assign-
ment are assumed to be either misidentifications, contami-
nated sequences, or pseudogenes. While misidentifications 
likely occur mostly within genera, contamination may yield 
barcodes that are identical or highly similar (> 97% simi-
larity) to sequences in different genera to phyla. BLAST 
searches will identify some of these errors when the assum-
ably erroneous sequences match with sequences from other 
taxonomic groups. Errors can be curated and corrected 
manually for each record by taxonomic experts for each 
zooplankton group, but the source records (i.e., GenBank 
or BOLD submission) can only be modified by the original 
author.

One would expect that the sequences of one species 
follow a unimodal distribution. In the Copepoda phyloge-
netic tree, we however identified species with two or more 
independent clades. This bi- or multi-modal sequence 

distribution of species is mainly found in taxonomically 
challenging taxa, such as Acartiidae or Paracalanidae. Until 
the taxonomic uncertainties associated with possible cryptic 
species are examined using integrative morphological taxo-
nomic and molecular genetic approaches these uncertainties 
cannot be resolved.

Taxonomic name changes that occur after sequences are 
published in GenBank are not recorded, unless the authors 
of the record submit requests for name changes. These new 
species assignments can only be identified by review of 
published results (see Cornils and Held 2014). Analysis of 
intraspecific variation of the COI barcode sequences by Loc-
atelli et al. (2020) revealed that more than half of the species 
they investigated had bi- or multi-modal distributions, which 
could be traced back to hybridization, misidentification, and 
contamination. In the future, species exhibiting such distri-
butions in COI sequence variation could be indicated in the 
MZGdb and used as an indicator of quality of the sequences, 
to be considered for various uses of barcode data, including 
diversity estimates based on metabarcoding.

Preventing errors: data entry quality control

Consistent with the goal of creating accurate and reliable 
DNA sequence reference databases, a best practice is to 
require that all COI barcodes submitted to public data repos-
itories be determined from specimens for which the species 
was identified by a qualified taxonomist, based on criteria 
defining appropriate background and experience. The name 
of the morphological taxonomist would then be identified in 
a metadata field in the barcode record.

An important best practice for DNA barcoding is the per-
manent retention of voucher specimens, which should be 
accessible to researchers based upon documented requests. 
One option is to ensure archival storage in academic insti-
tutions and public museums, which may ensure long-term 
preservation. These specimens are valuable for confirma-
tion of species identification, but even more for material for 
future analyses, including sequencing of additional barcod-
ing genes and—eventually—entire genomes.

In addition to permanent archiving of specimen vouch-
ers, another best practice is photographing living specimens 
prior to preservation and barcoding. Assuming sufficient res-
olution and appropriate selection of perspective (i.e., inclu-
sion of diagnostic characteristics for the species), the photo 
vouchers can be used for confirmation of species identifica-
tion. For some taxa, including gelatinous groups that are fre-
quently damaged upon collection and do not preserve well, 
photo vouchers provide the best source of archival informa-
tion for retrospective examination of species identifications 
of barcoded specimens.
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Call to action: COI reference library 
for marine zooplankton

A taxonomically complete, globally comprehensive COI 
reference sequence database for marine zooplankton is an 
essential foundation for widespread implementation of DNA 
barcoding and metabarcoding applications, which are rap-
idly becoming invaluable tools for fisheries management, 
environmental protection, and detection of climate change 
impacts throughout the global ocean. Accurate, reliable, and 
rapid identification of species of marine zooplankton will 
remain challenging, given the taxonomic and phylogenetic 
complexity of the assemblage and the marked variation 
among ocean regions and ecosystems. Public access to data 
and metadata for records for DNA barcode sequences of 
specimens that have been accurately identified to species, 
with associated tools to allow creation of custom databases 
for target taxonomic groups and ocean regions, and ensure 
quality control and error detection, will enable and encour-
age widespread use of species-level diversity analysis for 
research, management, and monitoring needs. Priorities for 
completion of a taxonomically complete, globally compre-
hensive COI reference reference database should include:

(1)	 Consensus agreement on top priorities for DNA bar-
coding efforts: These may include ecologically and 
environmentally important species that have significant 
impacts on ecosystem function and/or are indicators of 
key processes and parameters, geographic regions of 
special interest and/or at particular risk, and representa-
tives of ecologically important and/or highly impacted 
zooplankton taxonomic groups.

(2)	 Requirements for species-level identification: COI 
barcoding allows accurate discrimination and iden-
tification of species for many—but not all—taxo-
nomic groups of marine zooplankton. Where possible, 
COI reference barcodes should be determined for all 
described species, based upon specimens that have 
been identified to species by morphological taxonomic 
experts, with associated collection metadata (georef-
erencing), voucher photographs of specimens prior to 
preservation, and permanent retention of voucher speci-
mens.

(3)	 Georeferencing of collections for barcoded specimens: 
Collection metadata (latitude, longitude, date) for the 
specimen are essential for all records of COI barcode 
data in any public repository. This information facili-
tates detection of species identification errors by com-
parison with distribution records and aids detection of 
cryptic species, especially for taxa with broad biogeo-
graphical distributions.

(4)	 Statistical analysis of intraspecific variation of COI 
barcodes: Standard metrics of pairwise differences 
between barcode sequences for the same or closely-
related species, as listed in GenBank or BOLD, should 
become a usual metric for barcode databases. These 
metrics are useful for detection of errors in species 
identification and the presence of possible cryptic spe-
cies.
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