Patterns of CO2 concentration and inorganic carbon limitation of phytoplankton biomass in agriculturally eutrophic lakes


Contact
Dieter.Wolf-Gladrow [ at ] awi.de

Abstract

Lake eutrophication is a pervasive problem globally, particularly serious in agricultural and densely populated areas. Whenever nutrients nitrogen and phosphorus do not limit phytoplankton growth directly, high growth rates will rapidly lead to biomass increases causing self-shading and light-limitation, and eventually CO2 depletion. The paradigm of phytoplankton limitation by nutrients and light is so pervasively established, that the lack of nutrient limitation is ordinarily interpreted as sufficient evidence for the condition of light limitation, without considering the possibility of limitation by inorganic carbon. Here, we firstly evaluated how frequently CO2 undersaturation occurs in a set of eutrophic lakes in the Pampa plains. Our results confirm that conditions of CO2 undersaturation develop much more frequently (yearly 34%, summer 44%) in these agriculturally impacted lakes than in deep, temperate lakes in forested watersheds. Secondly, we used Generalized Additive Models to fit trends in CO2 concentration considering three drivers: total incident irradiance, chlorophyll a concentration, and lake depth; in eight multi-year datasets from eutrophic lakes from Europe, North and South America, Asia and New Zealand. CO2 depletion was more often observed at high irradiance levels, and shallow water. CO2 depletion also occurred at high chlorophyll concentration. Finally, we identified occurrences of light- and carbon-limitation at the whole-lake scale. The different responses of chlorophyll a and CO2 allowed us to develop criteria for detecting conditions of CO2 limitation. For the first time, we provided whole-lake evidence of carbon limitation of phytoplankton biomass. CO2 increases and eutrophication represent two major and converging environmental problems that have additive and contrasting effects, promoting phytoplankton, and also leading to carbon depletion. Their interactions deserve further exploration and imaginative approaches to deal with their effects.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Helmholtz Cross Cutting Activity (2021-2027)
N/A
Publication Status
Published
Eprint ID
54448
DOI https://www.doi.org/10.1016/j.watres.2020.116715

Cite as
Zagarese, H. E. , Sagrario, M. d. l. Á. G. , Wolf-Gladrow, D. , Nõges, P. , Nõges, T. , Kangur, K. , Matsuzaki, S. I. S. , Kohzu, A. , Vanni, M. J. , Özkundakci, D. , Echaniz, S. A. , Vignatti, A. , Grosman, F. , Sanzano, P. , Van Dam, B. and Knoll, L. B. (2021): Patterns of CO2 concentration and inorganic carbon limitation of phytoplankton biomass in agriculturally eutrophic lakes , Water Research, 190 , p. 116715 . doi: https://www.doi.org/10.1016/j.watres.2020.116715


Download
[thumbnail of Zagarese21.pdf]
Preview
PDF
Zagarese21.pdf

Download (1MB) | Preview

Share


Citation

Geographical region
N/A

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item