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Abstract

Body size, geographical distribution, and biomass make Adamussium colbecki (Smith, 1902) one

of the most conspicuous bivalve species in the Antarctic. Based on samples collected in austral

summer 1999/2000 in Terra Nova Bay, the annual formation of shell growth bands visible on X-ray

photographs was verified by stable isotope analysis. A general von Bertalanffy growth function was

fitted to size-at-age data of 25 individuals (Hl = 108.86 mm, K= 0.114 year� 1, t0 =� 0.367,

D = 1.284). Somatic production calculated from mass-specific growth rates was 234.6 kJ m� 2

year� 1. Gonadal productivity amounted to 70.92 kJ m� 2 year� 1. Annual somatic and gonad

production-to-biomass ratios (P/B) were 0.199 and 0.052, respectively. According to its

consumption and production, A. colbecki is likely to play a significant role in the trophic web of

Terra Nova Bay.
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1. Introduction

In contrast to temperate benthic environments (e.g. Loo and Rosenberg, 1989; Wildish

and Kristmanson, 1997; Mistri et al., 2001), molluscs contribute little to the often

0022-0981/03/$ - see front matter D 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0022-0981(03)00020-0

* Corresponding author. Tel.: +49-471-4831-1320; fax: +49-471-4831-1149.

E-mail address: oheilmayer@awi-bremerhaven.de (O. Heilmayer).

www.elsevier.com/locate/jembe

Journal of Experimental Marine Biology and Ecology

288 (2003) 239–256



extraordinarily high benthic standing stock in Antarctic waters (Arntz et al., 1994; Brey and

Gerdes, 1997) and are generally thought to play a minor role regarding energy flow (Jarre-

Teichmann et al., 1997). Locally, however, some populations may reach considerable

abundances and may play a significant role in nutrient cycling and benthic–pelagic

coupling.

In nearshore waters of the Ross Sea, the endemic scallop Adamussium colbecki (Smith,

1902) is the most abundant bivalve down to 100-m depth (Chiantore et al., 2001). A.

colbecki ‘banks’ play an important role in the coastal food web as they process up to 14%

of the total carbon flux (Chiantore et al., 1998) and represent an important food source for

higher tropic levels, e.g. fish (Trematomus bernacchii Boulenger) and invertebrates such

as Neobuccinum eatoni (Smith, 1875) and Paraborlasia corrugata (McIntosh, 1876)

(Vacchi et al., 2000). Despite its widespread distribution and assumed significance for the

system’s energy flow (e.g. Stockton, 1984; Berkman, 1990; Albertelli et al., 1998;

Chiantore et al., 1998, 2001), little is known about the population dynamics and

production of this species.

This study presents the first reliable age determination of A. colbecki from Terra Nova

Bay as confirmed by stable isotope analysis. Based on these data, production and

productivity values are calculated in order to evaluate the significance of A. colbecki in

the trophic web and energy flow of the coastal Ross Sea ecosystem.

2. Materials and methods

2.1. Sampling and processing of samples

Specimens were collected in Terra Nova Bay (‘Road Cove’, 74j41.9VS, 164j07.5VE) in
austral summer 1999/2000 at 30- to 76-m depth by Charcot-Picard and naturalist dredge.

Shell height (defined as the maximum distance between the dorsal hinge and ventral

margin) of a representative subsample of 895 individuals was measured to the nearest 0.1

mm using vernier callipers. A size frequency distribution (SFD) was obtained by pooling

individuals using class intervals of 2-mm size. Additional size frequency data from the

same site, obtained with the same gear, have been provided by Chiantore et al. (2000),

Cattaneo-Vietti et al. (1997), and references therein. To remove the fluctuations between

years and obtain a more representative long-term ‘average’ population, a multiyear size

frequency distribution was constructed by pooling data taken from the years 1989/1990 to

1999/2000. Prior to pooling, each sample was converted into percentage values to give the

same weight to each sample.

Size–mass relationships were modeled by linear regression of:

logðMÞ ¼ logðaÞ þ blogðSHÞ ð1Þ

where M is the soft tissue mass (g) at shell height SH (mm). Gonad colouring was used to

determine sex of the individuals (Chiantore et al., 2002). Soft tissue dry masses (DM) were

determined by oven drying of tissues at 60 jC for 24 h.
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2.2. Age and growth

Traditional methods of ageing A. colbecki such as counting bands on the shell surface

(e.g. Stockton, 1984; Berkman, 1990) or on X-ray photographs (Ralph and Maxwell,

1977; Cattaneo-Vietti et al., 1997) are not reliable without validation of annual formation

of those bands, as shown for scallops in general by Krantz et al. (1984) and Dare and Deith

(1990). We identified and verified annual growth bands in A. colbecki shells in a three-step

procedure: (i) external growth band identification, (ii) comparison with internal growth

band pattern, and (iii) validation of annual formation by stable isotope analysis.

In this study, only undamaged upper (left) shell valves free of epibionts were used for

growth analysis. Prior to analysis, shells were cleaned of organic matter with warm 5%

NaOCl solution, washed with 96% ethanol, rinsed with water, and dried at 60 jC for 12 h.

External, macroscopically visible shell surface growth bands were identified following the

method described by Merrill et al. (1965). This visual growth band pattern was compared

with the pattern of conspicuous rings of higher density detected on X-ray photographs of

the same shells. X-rays were taken by a Hewlett Packard Faxitron 43855 mammograph

with fixed anode, using an AGFA-Strukturix D4 FW film and the following parameters

settings: focal film distances 45 cm, voltage 30 to 45 kV, exposure times 35 to 80 s. To test

whether or not identified growth bands are formed annually, we analyzed stable isotopes

of shell carbonate (for review, see Richardson, 2001). This approach has recently been

applied successfully to identify annual growth patterns of Antarctic invertebrates (e.g.

Marshall et al., 1996; Brey and Mackensen, 1997) and of various scallops (e.g. Krantz et

al., 1984; Tan et al., 1988; Dare and Deith, 1990; Lasta et al., 2001). Stable oxygen ratios

(d18O) are inversely related to temperature (Epstein et al., 1953), hence lower d18O
characterises shell parts deposited during spring/summer, whereas higher values corre-

spond to parts formed during autumn/winter. Isotope analyses were performed on five

representative specimens (largest individual: 87-mm shell height). Calcium carbonate

powder was sampled from the outer shell layer in equally spaced (f 1 mm) dorso-ventral

series using a small dental drill (bit size: 0.5 mm). d18O were determined with a Finnigan

MAT251 mass spectrometer coupled to an automatic carbonate preparation device. The

results were reported in mil (x) deviations related to the Pee Dee belemnite (PDB)

standard through repeated analyses of National Bureau of Standard (NBS) isotopic

reference material 19 (Hut, 1987). The precision of measurements was better than

F 0.08x, based on routine measurements of a laboratory-working standard.

On confirmation of annual formation of X-ray visible growth bands, shells of 25

individuals of A. colbecki (15 males, 10 females) were X-ray photographed. Number (i.e.

age) and corresponding SH of each detectable X-ray growth band in each shell were

recorded. A generalized von Bertalanffy growth model (gVBGF) was fitted to the resulting

185 size-at-age data pairs by an iterative nonlinear least-square method (Newton

algorithm, see Brey, 2001 for details):

Ht ¼ Hl
�
1� e�Kðt�toÞ�D ð2Þ

where Ht is shell height at time t, Hl is mean asymptotic shell height, K is the Brody

growth coefficient, D determines the shape of the curve (inflection point if D>1), and to is

the age when shell height equals zero.
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2.3. Production

Somatic production of soft tissue (PS) was calculated by the mass-specific growth rate

method according to Crisp (1984) and Brey (2001) from the SFD, the VBGF parameters,

and the appropriate size–mass relation:

PS ¼
X

NiMiGi ð3Þ

where Ni andMi are the number of bivalves and mean individual somatic mass in size class

i, respectively, and Gi is the annual mass-specific growth rate which is computed by

Gi ¼ bKðHl � HiÞ=Hi ð4Þ

where b is the exponent of the size–mass relation (Eq. (1)), K and Hl are parameters of

the von Bertalanffy function (Eq. (2)), and Hi is the mean height in size class i.

Since A. colbecki has a discrete reproductive cycle and spawns only once a year

(Berkman et al., 1991), gonad production per total sample (PG) was estimated by the

decline of gonad mass before (summer) and after spawning (winter):

PG ¼
X

NiðMgonad ðsummerÞ �Mgonad ðwinterÞÞ ð5Þ

where Ni is the number of bivalves in size class i and Mgonad (summer) is the mean individual

gonad mass in summer in size class i. Mgonad (winter) values in this study were obtained

from a linear regression calculated from measurements of some individuals maintained

under simulated winter conditions in aquaria at the AWI (Germany, Bremerhaven):

log Mgonad ðwinterÞðg DMÞ ¼ �6:342þ 2:52 log SH ðmmÞ ð6Þ

Annual production/biomass ratios were calculated from somatic production (PS),

gonad production (PG), and biomass per total sample (BS =SNiMi). Annual production

of A. colbecki per square metre was calculated by multiplying the production-to-biomass

(P/B) ratios with an estimate of average biomass derived from mean body mass per total

sample and mean abundance at the sampling site (60 individuals m� 2; Cattaneo-Vietti et

al., 1997).

The following conversion factors were used:

1 g somatic DM= 20.22 kJ (Brey et al., 1988).

1 g gamete DM= 23.4 kJ (average according to MacDonald and Thompson, 1985).

1 g Corg = 45.7 kJ (Brey, 2001).

3. Results

3.1. Morphometrics

Size frequency distribution for several austral summers (Fig. 1a–g) showed a high

persistency of large individuals (>60 mm), with large oscillations in the smaller size
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Fig. 1. A. colbecki. Size frequency distribution in Terra Nova Bay (‘Road Cove’) using class intervals of 2 mm:

(a and b) in austral summer 1989/1990, 1993/1994 (redrawn from Cattaneo-Vietti et al., 1997), (c and d) in

austral summer 1994/1995, 1995/1996 (redrawn from Chiantore et al., 2000), (e) in austral summer 1997/1998

(Chiantore and Cattaneo-Vietti, unpublished data), (f ) in austral summer 1998/1999 (redrawn from Chiantore et

al., 2001), (g) in January 2000, and (h) pooled samples (1989/1990 to 1999/2000).
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classes (< 30 mm). The multiyear size frequency distribution (Fig. 1h) was polymodal and

dominated (>50%) by large animals (>66 mm).

Mean soft tissue DM was 1.35 g (SD = 1.4 g) with a range from 0.12 to 5.2 g. A

slight but significant difference (ANCOVA: P= 0.011, N = 165) in size–soft tissue DM

relation was found between males (log (g DM) = 2.882 log (mm SH)� 4.832) and

females (log (g DM) = 2.882 log (mm SH)� 4.836). As the sex ratio was nearly 1:1, we

did not differentiate between sexes and used the overall equation log (g DM) = 2.882 log

(mm SH)� 4.837 for all subsequent calculations. The relation between gonad dry mass

and shell height was not significantly different between male and female animals

(ANOVA of log-transformed data, P>0.5) and can be described by the overall equation:

log Mgonad ðsummerÞðg DMÞ ¼ �8238þ 4:058 log ðmm SHÞ
N ¼ 69; R2 ¼ 0:89; P < 0:01

3.2. Age and growth

X-ray bands could clearly be distinguished up to 80-mm shell height; further

growth bands closer to the shell edge could not be resolved accurately and were

hence not included in the analysis. A comparison of external vs. X-ray bands showed

a high degree of consistency (89.4%) in total number of growth bands, whereas the

position of external and X-ray band differed quite often (up to 2/3 of all bands in

one shell).

Fig. 2 shows X-ray photographs and corresponding d18O profiles of two representa-

tive A. colbecki shells from Terra Nova Bay. d18O values ranged from 3.04xto 3.88x
(Fig. 2b) and 3.13xto 3.92x(Fig. 2d) over the scallops lifetime, showing a cyclical

pattern with a slight trend towards lower values with increasing height. Eighty-five

percent of all X-ray growth bands coincide spatially with a local d18O peak (Fig. 2a and

b), indicating that these bands were formed at times of lowest temperature. The 185 size-

at-age data pairs obtained from X-rays were fitted best by a general von Bertalanffy

equation (Fig. 3)

Ht ¼ 108:86 mm
�
1� e�0:114 ðtþ0:367Þ�1:284 R2 ¼ 0:983:

The analysis of the residuals of this model showed no significant differences in growth

between males and females. The oldest individual found was estimated to be 18 years old

(91.8-mm height), but maximum age is likely to be higher.

3.3. Production and productivity

Total annual production for the season 1999/2000 amounted to 14.63 g DM m� 2

year� 1 (305.51 kJ m� 2 year� 1), corresponding to an annual Ptot/B ratio of 0.251

(0.199 for soma and 0.052 for gonads). Individuals >60 mm contributed most to

somatic as well as gonad production of the population (Fig. 4b). Mean annual
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Fig. 3. A. colbecki. General von Bertalanffy growth function fitted to size-at-age data obtained from 25 X-ray

photographed shells. Growth function parameters are Hl = 108.86 mm, K = 0.114, D = 1.284, and t0 =� 0.367

(N = 185, R2 = 0.983).

Fig. 2. A. colbecki. X-ray photographs ((a) 87.1 mm SH, (c) 72.1 mm SH) and corresponding stable oxygen

isotope ratio profiles ((b) 74 samples, (d) 62 samples) of two specimen. Grey bars indicate internal growth bands.

d18O is plotted as weighed moving average ((x1 + 2x2 + x3)/4).
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biomass of A. colbecki was estimated to be about 58.34 g DM m� 2 (1179.64 kJ

m� 2). From the multiyear size frequency distribution (1989–2000), average biomass,

somatic tissue, and gonad production were calculated to be 134.46 g DM m� 2

(2718.78 kJ m� 2), 21.57 g DM m� 2 year� 1 (432.81 kJ m� 2 year� 1), and 7.54 g

DM m� 2 year� 1 (176.47 kJ m� 2 year� 1), respectively. Annual Ptot/B ratio amounted

to 0.215.

Fig. 4. A. colbecki. (a) Individual production of somatic tissues and individual gonad production for different

size classes. (b) Size-specific distribution of annual somatic tissues and gonad production at the population

level, based on SFD from austral summer 1999/2000. (c) As in (b) but based on the multiyear SFD 1989–

2000.
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4. Discussion

4.1. Age determination

The general correlation between changes in seawater temperature and changes in shell

d18O has already been demonstrated for molluscs living at temperatures close to 0 jC
(Marshall et al., 1993; Simstich et al., 2001), as well as for A. colbecki in particular

(Barrera et al., 1990; Lohmann et al., 2001). Maximum d18O amplitudes in the scallops

investigated here correspond to an annual temperature range of about 2.6 jC (Craig

palaeotemperature equation, cf. Marshall et al., 1993), which is in good agreement with

the observed seawater temperature range of � 1.8 to + 0.75 jC in the Ross Sea (Picco et

al., 2000; Povero and Petrillo, 2000). The slight overall trend to lower d18O values with

increasing size and shell height up to 50 mm (Fig. 2b and d) is not uncommon in

molluscs (e.g. Krantz et al., 1987; Weidman et al., 1994; McConnaughey et al., 1997).

Such trends may be related to a continuous change in the relation of somatic to gonad

production with age (Calow, 1983) and/or to metabolic changes at onset of sexual

maturity (Chiantore et al., 2000).

A mark-recapture study recently conducted in Terra Nova Bay and in the aquaria of

the Alfred Wegener Institute in Bremerhaven (Chiantore et al., in press) indicates that

annual growth increments in A. colbecki are z 1 mm up to about 75-mm shell height and

15 years of age. Therefore, the 1-mm spatial resolution of our isotope shell transects

seems to be sufficient to resolve intra-annual d18O oscillations within this size and age

range.

The annual water temperature cycle is assumed to be the major determinant of shell

d18O. Salinity fluctuations can change water d18O and hence may also affect shell d18O,
but this effect is of minor significance (Tan et al., 1988). Moreover, salinity fluctuations

caused by ice formation and melting affect d18O in the same directions as temperature

(Barrera et al., 1990) and hence will enhance the isotope signal. The annual water

temperature cycle at Terra Nova has one peak in summer and one trough in winter.

Therefore, we conclude that one X-ray growth band is formed every winter in A.

colbecki, as already shown for many other scallop species (e.g. Tan et al., 1988; Schick

et al., 1988; Dare and Deith, 1990; Lasta et al., 2001). In our example shells (Fig. 2),

there are some d18O peaks without corresponding X-ray growth bands, i.e. in some

winters, no distinguishable band may be formed. This may cause underestimation of

true age, but the large number of shells (N = 25) used here compensates this potential

bias.

4.2. Growth of A. colbecki

Previously published estimates of VBGF growth parameter values in A. colbecki are not

directly comparable to our data because those studies (e.g. Ralph and Maxwell, 1977;

Stockton, 1984; Berkman, 1990; Pranovi et al., 1994) (i) applied the specialized VBGF

only, where the ‘‘shape’’ parameter D is set equal to 1, or (ii) were obtained from size-

increment data (Chiantore et al., in press) (for a detailed discussion, see Francis, 1988). A

common plot (Fig. 5), however, shows that all these growth models form a rather dense
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cluster of quite similar curves. Obvious differences may be caused partially by the

application of the less reliable visual shell growth band analysis (Stockton, 1984), partially

by differences in population age structure, and partially by differences in environmental

conditions between sites.

The index P= log(KMl), where K is the growth rate constant K of the VBGF and Ml

is inferred from Hl, can be used to compare overall growth performance of different

populations or species (Moreau et al., 1986). According to this measure, growth perform-

ance of scallops decreases with increasing latitude, and A. colbecki shows the lowest

growth performance of all scallops investigated so far (Fig. 6a). In comparison to other

Antarctic invertebrates, however, growth performance of A. colbecki appears rather high

(Fig. 6b). Actually, besides the bivalve Laternula elliptica (King and Broderip, 1831)

(Ralph and Maxwell, 1977; Urban and Mercuri, 1998), A. colbecki shows the highest

values of all Antarctic species investigated to date.

4.3. Production and productivity

Size frequency distributions of the A. colbecki population from Terra Nova Bay show

distinct annual differences (Fig. 1). This seems to be caused by extreme year-to-year

variability in recruitment success (Chiantore et al., 2001, 2002). Insufficient nutrition of

adults and of larvae during summer may be the major reason for recruitment failures

(Cattaneo-Vietti et al., 1999). Hence, production data referring to a single season such as

1999/2000 (Fig. 1g, Ptot = 305.51 kJ m� 2 year� 1, Ptot/B = 0.251 year� 1) are poor

Fig. 5. Von Bertalanffy growth functions of A. colbecki populations published by various authors. VBGF

parameters: Ralph and Maxwell (1977), Hl= 90 mm, K = 0.24, D set to 1; Stockton (1984), Hl = 105 mm,

K= 0.12, D set to 1; Berkman (1990), Hl= 128 mm, K= 0.09, D set to 1; Pranovi et al. (1994), Hl = 93 mm,

K= 0.19, D set to 1; Chiantore et al. (in press, TNB), Hl= 92 mm, K = 0.154, D set to 1; Chiantore et al. (in press,

aquaria), Hl= 101 mm, K= 0.09, D set to 1; this study, Hl= 108.86 mm, K = 0.114, D = 1.284.
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Fig. 6. Overall growth performance ( P= log(KMl)) in (a) scallop populations worldwide and (b) Antarctic

invertebrates of different taxons compared with A. colbecki from this study (filled dot). Data sources. (a) 1–5:

A. colbecki (1: Stockton, 1984; 2: Berkman, 1990; 3: this study; 4: Pranovi et al., 1994; 5: Ralph and Maxwell,

1977; 6: Chiantore et al., in press, wild population 7: Chiantore et al., in press, aquaria), 8: Aequipecten

opercularis (Allison, 1994), 9: Amusium japonicum (Williams and Dredge, 1981), 10: Amusium pleuronectes

(Nugranad, 1988, fidem Vakily, 1992), 11–13: Argopecten purpuratus (11: Yamashiro and Mendo, 1988; 12:

Mendo and Jurado, 1993; 13: Tomicic and Kong, 1978, in Wolff, 1994), 14–15: Chlamys islandica (14: Vahl,

1981; 15: Naidu et al., 1982, in Orensanz et al., 1990), 16: Chlamys techuela (Orensanz, 1986), 17:Mizuhopecten

yessoensis (Yoo et al., 1981), 18–20: Patinopecten caurinus (18: Haynes and Hitz, 1971, 19: MacDonald and

Bourne, 1987; 20: Ignell and Haynes, 2000), 21: Pecten alba (Gwyther and McShane, 1988), 22: Pecten fumata

(Fairbridge, 1953), 23–25: Pecten maximus (23: Dare and Deith, 1990; 24: Dare, 1991; 25: Allison, 1994), 26–

28: Placopecten magellanicus (26–27 MacDonald and Thompson, 1985, 1986; 28: Thouzeau et al., 1991), 29:

Zygochlamys patagonica (Lasta et al., 2001). Regression line: P= 3.257� 0.019�latitude (j); N= 29; R2 = 0.686.

(b) Brey and Clarke (1993), Brey (1999), and references therein.
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representatives of the population steady-state, whereas estimates derived from a multiyear

size frequency distribution (Fig. 1h, Ptot = 609.28 kJ m� 2 year� 1, Ptot/B = 0.215 year� 1)

are more representative from a long-term point of view (Allen, 1971). The strongly left-

skewed multiyear distribution (Fig. 1h) is typical of slow growing, long-lived species and

populations with irregular recruitment events (e.g. Brey et al., 1990, 1995b; Arntz et al.,

1992).

So far, this study presents the first attempt to estimate the gonad productivity of A.

colbecki which is based on differences between gonadal mass before and after spawning.

This approach assumes that all materials stored during the mass increase in summer are

devoted to reproduction, which may not be true. Precise spawning times are unknown.

Berkman et al. (1991) presume spawning in McMurdo Sound during austral spring, while

Cattaneo-Vietti et al. (1997) suggest that gonad maturation takes place in late summer.

PS/B as well as Ptot/B of A. colbecki are at the lower end of the range reported for

scallops, even when the scaling effect of average individual body mass is taken into

account (Fig. 7). This coincides well with the comparatively low overall growth

performance (Fig. 6) and indicates that the temperature-induced low metabolism of

individual A. colbecki (Heilmayer et al., 2002) is reflected at the level of population

turnover, as also found in other Antarctic invertebrates (Brey and Clarke, 1993; Brey et

al., 1995a,b; Urban and Mercuri, 1998).

Fig. 7. AnnualPS/B ratio (circles) andPtot/B ratio (squares) versusmean bodymass (kJ) in scallop populations. Data

sources: A. colbecki (Stockton, 1984; Berkman, 1990), C. islandica (Vahl, 1981), Comptopallium radula (Lefort,

1994),Crassadoma gigantea (MacDonald et al., 1991),Mimachlamys gloriosa (Lefort, 1994),Mimachlamys varia

(Shafee and Conan, 1984), Mizuhopecten yessoensis (Goliko and Scarlato, 1970), Patinopecten caurinus

(MacDonald and Bourne, 1987), Placopecten magellanicus (MacDonald and Thompson, 1985, 1986; Claereboudt

and Himmelman, 1996), Zygochlamys patagonica (Lasta et al., 2001). Black symbols: A. colbecki, this study—

season 1999/2000, open symbols: this study—based on multiyear SFD. Regression lines: (dots) log( PS/B) =

� 0.024� 0.345log(M); N = 20; R2 = 0.536; P< 0.01: (squares) log(Ptot/B) =� 0.146� 0.186log(M); N= 15;

R2 = 0.383; P < 0.05.
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4.4. Ecological significance

The ecological significance of A. colbecki in the Terra Nova Bay ecosystem is defined

by its position in the food web and by the amount of energy flowing through the

population. As A. colbecki is a suspension feeder, it represents a direct link between

pelagic primary production and benthic or demersal higher level predators. Known

predators of A. colbecki are T. bernacchii and invertebrates such as N. eatoni and

Odontaster validus (Vacchi et al., 2000). According to our results, about 433 kJ m� 2

year� 1 (ca. 9.5 g C m� 2 year� 1) are transferred from the scallop to its predators.

The question how much A. colbecki in Terra Nova Bay consumes and whether this

dense population living in the euphotic zone may be able to control primary pro-

duction as already observed in populations from temperate waters (see Smaal and

Prins, 1993; Dolmer, 2000) is more difficult to answer. Of the simple energy budget

(see Crisp, 1984):

Consumption ¼ Productionþ Respirationþ Egestionþ Excretion

total production, 609 kJ m� 2 year� 1, and respiration, 1558 kJ m� 2 year� 1 (whole year

average, calculated from measurements of summer and winter metabolism, Heilmayer et

al., 2002), are known, i.e. annual assimilation amounts to 2167 kJ m� 2 year� 1 (all

estimates referring to the long-term average population structure, Fig. 1h). Chiantore et al.

(1998) found the assimilation efficiency (100�Assimilation/Consumption) of A. colbecki

to be about 36%; hence, the annual consumption of the Terra Nova Bay population is

about 6000 kJ m� 2 year� 1 (ca. 131 g C m� 2 year� 1). Using Albertelli et al.’s (1998)

estimate of daily sedimentation rate in Terra Nova Bay, 0.36 g C m� 2 day� 1, and

assuming a productive phase of about 60 days per year (Albertelli et al., 1998), the annual

input to the benthos is about 1000 kJ m� 2 year� 1 (22 g C m� 2 year� 1), i.e. about 17%

of the food required by the A. colbecki population. Even if we allow for distinct

interannual variability of production and duration of productive phase, this is far too

low to maintain the A. colbecki population investigated. Potential additional food sources

may be (i) ice algae, (ii) macroalgal detritus, or (iii) lateral advection of organic matter

from the open Ross Sea. Ice algae can contribute significantly to total primary production

(Spindler and Dieckmann, 1991; Melnikov, 1998), but their production in Terra Nova Bay

has not yet been determined. The same is true for macroalgal detritus, which is known to

be produced in large quantities on littoral rocky shores (Berkman et al., 1986; Albertelli et

al., 1998). Lateral advection of organic matter is supposed to play a significant role in

Antarctic coastal and shelf systems (Dayton, 1990; Brey et al., 1993, 1995a; Arntz et al.,

1994), and the open Ross Sea is a potential source of matter laterally advected to Terra

Nova Bay. With primary production rates up to 180 g C m� 2 year� 1 (f 8200 kJ m� 2

year� 1) and average sedimentation rates of 97% (Fabiano et al., 1997; Saggiomo et al.,

2000), the Ross Sea is considered to be the most productive system in the Southern Ocean

(Smith et al., 1996).

Further quantitative and qualitative studies of whole year sedimentation in TNB will

answer open questions and may be the key to explain the interannual variability in A.

colbecki recruitment and population structure.

O. Heilmayer et al. / J. Exp. Mar. Biol. Ecol. 288 (2003) 239–256 251



Acknowledgements

This research could only be realised thanks to the support by the Italian National

Programme for Antarctic Research (PNRA) and the Alfred Wegener Institute for Polar and

Marine Research. We are grateful to Ute Jacob and Michael Seebeck (AWI) for pre-

paration of X-ray photographs as well as to Katrin Blancke and Andreas Mackensen

(AWI) for technical support in stable isotope analysis. We are indebted to P.A. Berkman

for a critical discussion of the manuscript. Sandra Shumway and an anonymous referee are

acknowledged for many helpful comments and linguistic corrections. [SS]

References

Albertelli, G., Cattaneo-Vietti, R., Chiantore, M., Pusceddu, A., Fabiano, M., 1998. Food availability to an

Adamussium bed during the Austral Summer 1993/1994 (Terra-Nova Bay, Ross Sea). J. Mar. Syst. 17,

425–434.

Allen, K.R., 1971. Relation between production and biomass. J. Fish. Res. Board Can. 28, 1537–1581.

Allison, E.H., 1994. Seasonal growth models for great scallops (Pecten maximus (L.)) and queen scallops

(Aequipecten opercularis (L.)). J. Shellfish Res. 13, 555–564.

Arntz, W.E., Brey, T., Gerdes, D., Gorny, M., Gutt, J., Hain, S., 1992. Patterns of life history and population

dynamics of benthic invertebrates under the high Antarctic conditions of the Weddell Sea. In: Colombo, G.,

Ferrari, I., Ceccherelli, V.U., Rossi, R. (Eds.), Marine Eutrophication and Population Dynamics, with a

Special Section on the Adriatic Sea. 25th European Marine Biology Symposium. Olsen & Olsen, Fredens-

borg, Denmark, pp. 221–230.

Arntz, W.E., Brey, T., Gallardo, V.A., 1994. Antarctic zoobenthos. Oceanogr. Mar. Biol. Ann. Rev. 32, 241–304.

Barrera, E., Tevesz, M.J.S., Carter, J.G., 1990. Variations in oxygen and carbon isotopic compositions and

microstructure of the shell of Adamussium colbecki (Bivalvia). Palaios 5, 149–159.

Berkman, P.A., 1990. The population biology of the Antarctic scallop, Adamussium colbecki (Smith, 1902) at

New Harbor, Ross Sea. In: Kerry, K.R., Hempel, G. (Eds.), Antarctic Ecosystems. Ecological Change and

Conservation. Springer, Berlin, NY, pp. 281–288.

Berkman, P.A., Marks, D.S., Shreve, G.P., 1986. Winter sediment resuspension in McMurdo Sound, Antarctica,

and its ecological implications. Polar Biol. 6, 1–3.

Berkman, P.A., Waller, T., Alexander, S.P., 1991. Unprotected larval development in the Antarctic scallop

Adamussium colbecki (Mollusca: Bivalvia: Pectinidae). Antarct. Sci. 3, 151–157.

Brey, T., 1999. Growth performance and mortality in aquatic macrobenthic invertebrates. Adv. Mar. Biol. 35,

153–223.

Brey, T., 2001. Population dynamics in benthic invertebrates. AVirtual Handbook. Alfred Wegener Institute for

Polar and Marine Research, Germany. Version 1.2. http://www.awi-bremerhaven.de/Benthic/Ecosystem/

FoodWeb/Hand book/main.html.

Brey, T., Clarke, A., 1993. Population dynamics of marine benthic invertebrates in Antarctic and subantarctic

environments: are there unique adaptations. Antarct. Sci. 5, 253–266.

Brey, T., Gerdes, D., 1997. Is Antarctic benthic biomass really higher than elsewhere? Antarct. Sci. 9, 266–267.

Brey, T., Mackensen, A., 1997. Stable isotopes prove shell growth bands in the Antarctic bivalve Laternula

elliptica to be formed annually. Polar Biol. 17, 465–468.

Brey, T., Rumohr, H., Ankar, S., 1988. Energy content of macrobenthic invertebrates: general conversion factors

from weight to energy. J. Exp. Mar. Biol. Ecol. 117, 271–278.

Brey, T., Arntz, W.E., Pauly, D., Rumohr, H., 1990. Arctica (Cyprina) islandica in Kiel Bay (Western Baltic):

growth, production and ecological significance. J. Exp. Mar. Biol. Ecol. 136, 217–235.

Brey, T., Starmans, A., Magiera, U., Hain, S., 1993. Lissarca notorcadensis (Bivalvia: Philobryidae) living on

Notocidaris sp. (Echinoida: Cidaroidea): population dynamics in limited space. Polar Biol. 13, 89–95.

Brey, T., Pearse, J., Basch, L., McClintock, J., Slattery, M., 1995a. Growth and production of Sterechinus

neumayeri (Echinoidae: Echinodermata) in McMurdo Sound, Antarctica. Mar. Biol. 124, 279–292.

O. Heilmayer et al. / J. Exp. Mar. Biol. Ecol. 288 (2003) 239–256252

 http:\\www.awi-bremerhaven.de\Benthic\Ecosystem\FoodWeb\Handbook\main.html 


Brey, T., Peck, L.S., Gutt, J., Hain, S., Arntz, W.E., 1995b. Population dynamics of Magellania fragilis, a

brachipod dominating a mixed bottom macro-benthic assemblage on the Antarctic shelf. J. Mar. Biol. Assoc.

U.K. 95, 857–869.

Calow, P., 1983. Life-cycle patterns and evolution. In: Russel-Hunter, W.D. (Ed.), The Mollusca. Ecology, vol. 6.

Academic Press, Boston, pp. 649–678.

Cattaneo-Vietti, R., Chiantore, M., Albertelli, G., 1997. The population structure and ecology of the Antarctic

scallop Adamussium colbecki (Smith, 1902) at Terra Nova Bay (Ross Sea, Antarctica). Sci. Mar. 61, 14–24.

Cattaneo-Vietti, R., Chiantore, M., Misic, C., Povero, P., Fabiano, M., 1999. The role of pelagic–benthic

coupling in structuring littoral benthic communities at Terra Nova Bay (Ross Sea) and in the Straits of

Magellan. Sci. Mar. 63, 113–121.

Chiantore, M., Cattaneo-Vietti, R., Albertelli, G., Misic, C., Fabiano, M., 1998. Role of filtering and biodepo-

sition by Adamussium colbecki in circulation of organic matter in Terra Nova Bay (Ross Sea, Antarctica).

J. Mar. Syst. 17, 411–424.

Chiantore, M., Cattaneo-Vietti, R., Albertelli, G., 2000. The population structure and ecology of the Antarctic

scallop Adamussium colbecki in Terra Nova Bay. In: Faranda, F.M., Guglielmo, L., Ianora, A. (Eds.), Ross

Sea Ecology: Italiantartide Expeditions (1987–1995). Springer, Berlin, pp. 563–573.

Chiantore, M., Cattaneo-Vietti, R., Berkman, P.A., Nigro, M., Vacchi, M., Schiaparelli, S., Albertelli, G., 2001.

Antarctic scallop (Adamussium colbecki) spatial population variability along the Victoria Land Coast, Ant-

arctica. Polar Biol. 24, 139–143.

Chiantore, M., Cattaneo-Vietti, R., Elia, L., Guidetti, M., Antonini, M., 2002. Reproduction and condition of the

scallop Adamussium colbecki (Smith, 1902), the sea-urchin Sterechinus neumayeri (Meissner 1900) and the

sea-star Odontaster validus Koehler 1911 at Terra Nova Bay (Ross Sea): different strategies related to inter-

annual variations in food availability. Polar Biol. 25, 251–255.

Chiantore, M., Cattaneo-Vietti, R., Heilmayer, O., 2003. Antarctic scallop (Adamussium colbecki) annual growth

rate at Terra Nova Bay. Polar Biol. (in press).

Claereboudt, M.R., Himmelman, J.H., 1996. Recruitment, growth and production of giant scallops (Placopecten

magellanicus) along an environmental gradient in Baie des Chaleurs, eastern Canada.Mar. Biol. 124, 661–670.

Crisp, D.J., 1984. Energy flow measurements. In: Holme, N., McIntoye, A.D. (Eds.), Methods for the Study of

Marine Benthos. Blackwell, Oxford, pp. 284–372.

Dare, P.J., 1991. Use of external shell microgrowth patterns for determining growth and age in the scallop Pecten

maximus. Actes Colloq.—IFREMER 17, 211–218.

Dare, P.J., Deith, M.R., 1990. Age determination of scallops, Pecten maximus (Linnaeus, 1758), using stable

oxygen isotope analysis, with some implications for fisheries management in British waters. In: Shumway,

S.E., Sandifer, P.A. (Eds.), An International Compendium of Scallop Biology and Culture. World Aquaculture

Society, Baton Rouge, LA, pp. 118–133.

Dayton, P.K., 1990. Polar benthos. In: Smith Jr., W.O. (Ed.), Polar Oceanography, Part B. Academic Press,

London, pp. 631–685.

Dolmer, P., 2000. Algal concentration profiles above mussel beds. J. Sea Res. 43, 113–119.

Epstein, S., Buschbaum, R., Lowenstam, H.A., Urey, H.C., 1953. Revised carbonate-water isotopic temperature

scale. Geol. Soc. Amer. Bull. 64, 1315–1326.

Fabiano, M., Chiantore, M., Povero, P., Cattaneo-Vietti, R., Pusceddu, A., Misic, C., Albertelli, G., 1997. Short-

term variations in particulate matter flux in Terra Nova Bay, Ross Sea. Antarct. Sci. 9, 143–149.

Fairbridge, W.S., 1953. A population study of the Tasmanian ‘‘commercial’’ scallop Notovola meridionalis (Tate)

(Lamellibranchi, Pectinidae). Aust. J. Mar. Freshw. Res. 4, 1–40.

Francis, R.I.C.C., 1988. Are growth parameters estimated from tagging and age-length data comparable? Can. J.

Fish. Aquat. Sci. 45, 936–942.

Goliko, A.N., Scarlato, O.A., 1970. Abundance, dynamics and production properties of edible bivalves Mizu-

hopecten yessoensis and Spisula sachalinensis related to the problem of organisation of controllable sub-

marine farms at the western shores of the Sea of Japan. Helgol. Mar. Res. 20, 498–513.

Gwyther, D., McShane, P.E., 1988. Growth rate and natural mortality of the scallop Pecten alba Tate in Port

Phillips Bay, Australia, and evidence for changes in growth rate after a 20-year period. Fish. Res. 6, 347–361.

Haynes, E.B., Hitz, C.R., 1971. Age and growth of the giant Pacific sea scallop, Patinopecten caurinus, from the

Strait of Georgia and outer Washington coast. J. Fish. Res. Board Can. 28 (9), 1335–1341.

O. Heilmayer et al. / J. Exp. Mar. Biol. Ecol. 288 (2003) 239–256 253
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