A finite-element ocean model: principles and evaluation
We describe a three-dimensional (3D) finite-element ocean model designed for investigating the large-scale ocean circulation on time scales from years to decades. The model solves the primitive equations in the dynamical part and the advection-diffusion equations for temperature and salinity in the thermodynamical part. The time-stepping is implicit. The 3D mesh is composed of tetrahedra and has a variable resolution. It is based on an unstructured 2D surface mesh and is stratified in the vertical direction. The model uses linear functions for horizontal velocity and tracers on tetrahedra, and for surface elevation on surface triangles. The vertical velocity field is elementwise constant. An important ingredient of the model is the Galerkin least-squares stabilization used to minimize effects of unresolved boundary layers and make the matrices to be inverted in time-stepping better conditioned. The model performance was tested in a 16-year simulation of the North Atlantic using a mesh covering the area between 7° and 80° N and providing variable horizontal resolution from 0.3° to 1.5°. © 2003 Elsevier Ltd. All rights reserved.
Helmholtz Research Programs > MARCOPOLI (2004-2008) > German community ocean model