Tying seismic data to geologic information from core data: an example from ODP Leg 177
The integration of seismic data with core data should provide ground-truth to a structural interpretation of seismic data. The main difficulty in such an integration effort is the correct translation of physical property measurements on cores to a form which can be used in seismostratigraphic interpretation. In the absence of down-hole well data and check-shots, required knowledge of the velocity structure at the drilling locations can be obtained directly from measurements of the physical properties of core samples. This involves upscaling of the data from physical properties of cores to the sample interval used in the seismic data. In the present study, three of the seven drill-sites of ODP (Ocean Drilling Program) Leg 177 in 1997/1998, located on the Agulhas Ridge in the south-eastern Atlantic (sites 1088-1090), were connected with eight seismic profiles. Physical properties data measured on the cores from the various holes at each site were combined to create a single continuous log and used to construct synthetic seismograms. The synthetics generally show a good agreement with real seismic data in terms of amplitude and waveform. Some reflections in these generated traces may have a time-shift due to sections with incomplete or spurious P-wave velocity measurements in the ODP datasets. The main reflectors identified in the real seismic data correspond to hiatuses or periods of reduced sedimentation rates, and correlate well with density variations. One particular hiatus, clearly observable in the real seismic data, was not unequivocally identifiable in the various types of core data, and tying core data to seismic data can confirm its existence in the core data, showing the benefit of including seismic data in an interpretation of core log data. On the other hand, core data provide a calibration tool for the geological timescale of seismic data and information about the lithology, needed in the interpretation of seismic data. © Springer-Verlag 2006.
Helmholtz Research Programs > MARCOPOLI (2004-2008) > MAR2-Palaeo Climate Mechanisms and Variability