Southern African continental margin: Dynamic processes of a transform margin


Contact
Karsten.Gohl [ at ] awi.de

Abstract

Dynamic processes at sheared margins associated with the formation of sedimentary basins and marginal ridges are poorly understood. The southern African margin provides an excellent opportunity to investigate the deep crustal structure of a transform margin and to characterize processes acting at these margins by studying the Agulhas-Falkland Fracture Zone, the Outeniqua Basin, and the Diaz Marginal Ridge. To do this, we present the results of the combined seismic land-sea experiments of the Agulhas-Karoo Geoscience Transect. Detailed velocity-depth models show crustal thicknesses varying from ̃42 km beneath the Cape Fold Belt to ̃28 km beneath the shelf. The Agulhas-Falkland Fracture Zone is embedded in a 50 km wide transitional zone between continental and oceanic crust. The oceanic crust farther south exhibits relatively low average crustal velocities (̃6.0 km/s), which can possibly be attributed to transform-ridge intersection processes and the thermal effects of the adjacent continental crust during its formation. Crustal stretching factors derived from the velocity-depth models imply that extension in the Outeniqua Basin acted on regional as well as more local scales. We highlight evidence for two episodes of crustal stretching. The first, with a stretching factor b of 1.6, is interpreted to have influenced the entire Outeniqua Basin. The stresses possibly originated from the beginning breakup between Africa and Antarctica (̃169-155 Ma). The second episode can be associated with a transtensional component of the shear motion along the Agulhas-Falkland Transform from ̃136 Ma. This episode caused additional crustal stretching with β = 1.3 and is established to only have affected the southern parts of the basin. Crustal velocities directly beneath the Outeniqua Basin are consistent with the interpretation of Cape Supergroup rocks underlying most parts of the basin and the Diaz Marginal Ridge. We propose that the formation of this ridge can be either attributed to a transpressional episode along the Agulhas-Falkland Transform or, more likely, to thermal uplift accompanying the passage of a spreading ridge to the south. © 2009 by the American Geophysical Union.



Item Type
Article
Authors
Divisions
Programs
Publication Status
Published
Eprint ID
19717
DOI https://www.doi.org/10.1029/2008gc002196

Cite as
Parsiegla, N. , Stankiewicz, J. , Gohl, K. , Ryberg, T. and Uenzelmann-Neben, G. (2009): Southern African continental margin: Dynamic processes of a transform margin , Geochemistry, Geophysics, Geosystems, 10 (3), n/a-n/a . doi: https://www.doi.org/10.1029/2008gc002196


Download
[thumbnail of Fulltext]
Preview
PDF (Fulltext)
Par2009b.pdf

Download (3MB) | Preview
Cite this document as:

Share


Citation

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item